1044

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 10, OCTOBER 1986

Theory of Gyrotron Traveling-Wave
Amplifiers

Q. F.LL S. Y. PARK, anD J. L. HIRSHFIELD

Abstract —A unified single-mode theory is developed for the gyro-
tron traveling-wave amplifier (gyro-TWA) at harmonics of electron
gyrofrequency, both in linear and nonlinear regimes. The theory is applica-
ble to a wide class of waveguide cross sections and waveguide modes; it can
also be useful for arbitrary harmonic numbers and with the generalized
electron beam model. The waveguide fields are expanded into series of
muitipoles about the electron guiding centers. A general dispersion equa-
tion is derived. Some numerical examples of the gain—frequency curves of
gyro-TWA’s with out-ridged, magnetron-type, rectangular and circular
waveguides are computed by employing the results of kinetic theory.

1. INTRODUCTION

ECAUSE OF THEIR ABILITY to produce or to

amplify millimeter and submillimeter waves at un-
precedented power levels with high efficiency, gyrotron
devices have been intensively investigated both theoreti-
cally and experimentally in the past two decades. Their
promising applications include plasma heating, new milli-
meter- and submillimeter-wave radar systems, spec-
troscopy, and advanced accelerators.

This new class of microwave devices is based on the
electromagnetic radiation mechanism known as the elec-
tron cyclotron maser instability, which originates from the
electron azimuthal bunching due to the dependence of
electron relativistic gyration frequency on energy.

A gyrotron device has an electron beam traveling within
a waveguide (or one or more cavities) which is immersed in
the applied magnetic field. Since the beam—field interac-
tion takes place in the plane transverse to the direction of
wave propagation, the electrons must have a substantial
part of their kinetic energy in the form of gyration motion
as they move on helical orbits along magnetic field lines.

Fig. 1 illustrates the basic configuration of a gyrotron
traveling-wave amplifier (gyro-TWA).

The electron cyclotron maser mechanism was recognized
first by the astrophysicist R. Q. Twiss [1] in 1958. Shortly
after Twiss’s work, A. V. Gaponov [2] published a paper to
describe the classical theory of cyclotron maser.
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J. L. Hirshfield and J. M. Wachtel performed the first
experiment that definitely demonstrated the existence of
the electron cyclotron maser mechanism in 1964 [3], [4].
They reported an experiment with a 5-kV electron beam
traveling along an axial magnetic field, and the beam was
injected into a high-Q cylindrical cavity with most of the
kinetic energy transverse to the applied magnetic field.

The early experiments were with small power and low
efficiency, but since 1974 the advances in gyrotron re-
search have come at a rapid pace. The advent of the
intense pulsed relativistic electron beam renewed the inter-
est in the cyclotron maser mechanism as a source of
high-power microwave radiation. Powers of 800 MW at 4
cm [5], 350 MW at 2 cm [6], and 8 MW at 8 mm [7] have
been generated with gyrotrons. Gyrotrons built by Soviet
scientists have produced 1.25 MW of 45-GHz radiation
with a pulse duration of 1 to 5 ms, 1.1 MW of 100-GHz
radiation with a pulse duration of 100 ps, and 120 kW at
375 GHz with a pulse duration of 0.1 ms [8]. The efficiency
of these gyrotron oscillators operating at the fundamental
harmonic of gyration frequency is about 30-40 percent [9].
Jory and his group did an experiment which generated 200
kW CW at 60 GHz [10]. Temkin ef al. reported 130 kW at
240 GHz with a pulse duration of 0.1 ms {11]. The experi-
ments to heat plasmas in controlled-fusion devises have
been done effectively [12]. Some new configurations for
gyrotrons have been examined in the experiments. The
gyro-TWA experiments have been performed and the re-
sults have surpassed those of the conventional TWA de-
vices [13].

Hirshfield ez al. [4] first employed plasma kinetic theory
to analyze gyrotron interaction, and this approach has
been widely used since. An electron distribution function
(in space and momentum) is specified and the perturbed
distribution function is obtained by integrating the
linearized Vlasov equation along the unperturbed trajecto-
ries of the gyrating electrons. Another method of analyzing
the interaction process is the Lagrangian formulation where
one directly solves the equation of motion of the electrons
in the applied and RF fields. If rigorous relativistic kinet-
ics are required, such as in the high-power and the higher
gyration harmonic gyrotron cases, the integration has to be
accomplished numerically.

In developing gyrotrons at millimeter and submillimeter
wavelengths for plasma heating, radar systems and some
other purposes, there is an increasing necessity to reduce
the weight and size of the devices and, consequently, to
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Basic configuration of a gyro-TWA.

reduce the magnetic field substantially. For the amplifica-
tion or generation of submillimeter waves with gyrotrons,
an impractically high applied magnetic field would be
required if the device is operated at the fundamental
cyclotron harmonic. For a gyrotron operating at the same
frequency range but at the sth harmonic of the electron
gyrofrequency, the applied magnetic field is reduced ap-
proximately by a factor of 5. This is of great importance,
especially for uses in compact radar systems and for those
applications where the device size and weight are critical to
the system.

This paper presents a unified theory of gyro-TWA at
harmonics of the electron gyrofrequency. The fields in the
waveguide and, consequently, the forces on the electrons
are expressed by infinite series of multipole components
expanded around the axis of the electron helical trajecto-
ries. This makes the analyses, both linear and nonlinear,
capable of handling several different shapes of waveguide
cross sections for the RF structures of gyro-TWA devices.

The waveguide structure is very important for the oper-
ation of gyrotrons at higher harmonics of electron
gyrofrequency. A good waveguide structure creates a suit-
able field pattern in the waveguide to enhance the beam—
field interaction substantially at the operating gyration
harmonic.

It has been realized in general that the RF-field trans-
verse inhomogeneity in the waveguide is responsible for
the interaction between the electron beam and the field in
gyrotron devices at the harmonics of the electron gyration
frequency [7]. In the present work, the analytical results
show that the electron beam interaction with the field at
the sth harmonic is associated with the multipole field of
order 2s only if the field is expanded around the guiding
centers of electrons. In order to achieve a good coupling
between the waveguide field and electrons, a larger beam
energy is required for gyrotrons working at higher gyration
harmonics. However, unlike previous theoretical predict-
ions, in this work it is shown that a higher order waveguide
mode is not necessarily better for a gyrotron device to
work at higher harmonics than a lower order mode, even
though the higher waveguide mode has a higher transverse
inhomogeneity in the RF field.

Starting with the Maxwell equations and the equation of
motion of an electron, employing the weakly irregular
waveguide theory, and expanding the waveguide field into
an infinite series of the multipoles around the gyration
centers of the electrons, we derive a set of equations in
Section II to describe the nonlinear evolution of electron
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motion in a self-consistent manner. A dispersion equation
is derived by iterating the solution of that set of equations.
Section I1I is devoted to kinetic theory. The introduction
of the Laplace transformation allows us to include the
initial values. The small-signal gain—frequency relation is
obtained through the inverse Laplace transformation. As
examples, the small-signal gain-frequency curves for gyro-
TWA’s with several waveguide structures, such as the
out-ridged, rectangular, magnetron-type, and circular
waveguides are computed.

I1I. NONLINEAR THEORY

In this section, we formulate a set of basic equations for
gyrotron nonlinear theory. Starting with the Maxwell
equations and the equation of motion of an electron in the
electromagnetic field, we derive a set of nonlinear equa-
tions which can be applied to the gyrotrons with different
waveguides. A general dispersion equation of gyro-TWA is
derived from that set of nonlinear equations with an
iteration method.

In the analysis, all the RF fields are assumed to be time
harmonic. From the Maxwell equations, an inhomoge-
neous Helmholtz equation for the magnetic field can be
derived as

w? 4
V28+?B=—TV><J (1)

where w is the angular frequency, ¢ is the speed of light,
and J is the current density.

For TE waveguide modes, E. =0, where z is along the
axial direction of the waveguide. With the assumption
|d /dz1n B,} <1, we may write the axial component of the
magnetic field in the following form:

B, = F(z)B)(r) e/ )

where r, represents the transverse coordinates and F(z) is,
in general, a complex function of z. In the gyrotron
analyses, |d/dzIn B,| <1 is a good approximation since
the beam-wave interaction is strong only in a frequency
range that is close to the cutoff frequency of the operation
wave mode, where the waveguide wavelength is long com-
pared to the scale length of the beam—wave interaction.

If operator v is written as vV =V, + e,d/9z, then v % =

v}2+3%/32, and from (2) the equation for B, takes the
form

2 w2
(V,2+k3)F(Z)BzO+ F-F—Z—kcz.)F(Z)BZO

22 ¢

4m
=~ '—C—(V xJ)-e,. (3)

A parameter k, has been introduced in the above and it
will be determined later. Since B, is assumed to be in the
form of (2) and the space charge effects will be neglected,
the eigenvalues and the associated eigenfunctions of the
waveguide for TE modes can be obtained by solving the
equation

(v’ +k2)B=0 (4)
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subject to the perfect conducting boundary condition on
the wall of the waveguide

nv,B’=0

(5)

where n is a unit vector normal to the waveguide wall
surface.

From (3), for function F(z), we have the following
equation:

d2 wz
(P*?‘kf

where

)F(Z) == :_;L(V X J)-e.(B?)" dA
(6)

N= fA BY(B?)* (7)

(B2)* is the complex conjugate of B, and the integration
is over the cross section of the waveguide.

The transverse components of the electric and magnetic
field for TE waveguide modes can be derived from the
Maxwell equations as

1 9F(z)
k29,

VIBZOejwt

(8)

E = Jk2F( Ye, X v,Bl/“", 9)

In this formalism, the problem of determining the fields
in the waveguide with moving electrons reduces to (4),
which is the same equation as that for the empty wave-
guide, and to (6), which involves the electron beam and the
fields in the waveguide. But for (6), we can have several
different ways to obtain its right-hand side. In this work,
two different approaches to obtain the right-hand side of
(6) will be employed.

It should be pointed out that if the right-hand side of (6)
is set to zero but k, is assumed to be a function of z, then
under single-mode assumption, (6) can be the basic equa-
tion for slow-varying waveguides used in gyrotrons
[14]-[19].

The assumptions made in this nonlinear analysis include
a single-wave mode, the neglect of space-charge effects,
and an initially monoenergetic electron beam. In the tenu-
ous beam case, the single waveguide mode is a very good
description and has been confirmed by experiments [7],
[10]. The beam and waveguide model is depicted in Fig.
2(a). In this model, the beam can be either annular or
concentric. Moreover, since the shape of the waveguide
cross section is not restricted to being circular or rectangu-
lar, it can be applicable to several different shapes. In the
analyses, no assumption about beam energy is made;
therefore, the results are valid even in the fully relativistic
electron beam case. In the following, the field components
in the waveguide are expanded into the series of Bessel
functions. The coefficients in the expansions are depen-
dent upon the waveguide structure.

Since the momentum P = ymw, for the electrons in the
electromagnetic field, the relativistic equations of motion
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Fig 2. (a) Electron beam-waveguide model (b} Projection of an elec-
tron trajectory on the cross section of a waveguide.
are
darP 1
—=—¢|lE+—vXB (10)
dt ¢
dy
5
mc-— =—ev-E 11
” (11)

where y = (1—0v%/c?)" /2,

For TE modes, the fields in the waveguide can be
expressed as B= (B, + B )e.+ Be, +Be, E=Le +
Ee,, and Bge, is the apphed magnetlc field. From the
equation for y in (11), it is seen that the energy exchange
of the electrons for the TE waveguide modes is entirely
from the interaction of electron transverse velocity with
waveguide transverse electric field.

In general, we can expand the waveguide field into the
infinite series in the following equation [32] in cylindrical
coordinates:

o0 [oe]
=X X Ay (kr)em
n=0m=—-o0

The coefficients 4,,, in the series are dependent upon
the shape of the waveguide cross section, J (x) is the
first-kind Bessel function of order m, and r =
(x2+ y)'/2 Setting v=v,+ ju,, we have v, =1/2(c +
v*), v,=— j/2(v—v*), where v* is the complex con-
jugate of v. Furthermore, if the solution of v is assumed to
be in the form v = v,e’*, v, = (vv*)!/?, and the phase angle

A =tan"Y (v, /v,) = —tan" [ j(v — v*)/v + v¥].

Following the approach of [20], we can have

SO Y Y T Ay (k)
Tk r)) e/ termsEEmO) - (13)

2 d

- +J8—3)F(z)

wo
arT 2mevyk, | c?

Y Y Y Ayl (kR)

n=0m=—~00 s=-—-00

J/(k rl)ej(wtfs‘ll—i-m@)
s c

(12)

d ev,

(14)

d Iny + — (E+'E)+jv’(B+'B)
e p—Invy 4 — =
dt Udtymy x I8y ¢ VT IEy
ieB?
_J v—jQu. (15)
mey

In Cartesian coordinates, by equating the teal and the
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imaginary part on both sides of (15) correspondingly, we

obtain the following two equations:

d e v,
0,=— U,;i—tlny-l- ;‘;[(EX— ;By)COS(A)

+(Ey+ %Bx) sin(A)}

St e ad
meyk? (w B UZE)

. d d
-F(z)[sm(A)?x— —cos(A)—a—y]Bzoef‘*”

——Utzhl

(16)

. v,
A=- -— i
—- {(EX . By) sin(A)
v, eB.
+(Ey+—“Bx)cos(A)]+—‘—+Qc
c mcy
e d
- myckfv,(w Uzaz)
F A O s A i Blesw!
-F(z)j|cos( )—é;+sm( )8y e
0
ey (17)
where Q = eB, /mcy.

With reference to Fig. 2(b), making use of Graf’s ad-
dition theorem, we have

o e wol d
o, = — 2 e F(z)

Z Anm nm— S‘(k R)

n=0m=—00 s=—o00
.Jsl(kcr[)ej(wtfs‘ll+m®) (18)
A ° ' ! kp, |F
T 2meyk, (]w > "U’) (2)
X X X At (kR)
n=0m=—-00 s=—-00
T (k)i 4 g (19)

where A and o, denote the time derivatives of A and v,,
respectively.
However, the function F(z) involved in the above equa-
tions is still to be solved. We write the current density as
1y
J=——0v

o (20)

where [, is the dc current. Making use of (8) and (9), the
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integral of the right-hand side of (6) can be cast into

Jav x Fe (B)" = [da[v-(1x(B)".)

+v)([(BzO eZ]+V X(Bzez)"’]

jck 21
S0 /dAtrE*.

T ovaF(2) s (21)

It is seen from (21) that the axial component of the
current does not contribute to the above integration and
this integral is just proportional to the electron beam
energy change rate averaged over the waveguide cross
section. If the electron beam is idealized as having a single
guiding center R, if the beam energy in most cases is not
too high, and if k, is small, we may approximate v, = v,,,
and I,/v., as the linear charge density in the waveguide.
From (6) and (21), we can have the following equation:

2 2
(3;+*2—k02)F(Z)—S_0 (22)
where
2ml, & ol v
S=i—p L X Apfda s, (kR)
n=0m=—o v,
_JS/(kcr[)ej(wt—s‘PwLm@). (23)

In the above equations, the Larmor radius r,=v, /..
Therefore, we obtained a set of coupled nonlinear differen-
tial equations from (14), (18), (19), and (22). This set of
equations describes the nonlinear evolution of electrons in
the gyro-TWA devices. Essentially, this set of equations is
a set of the particle orbit equations coupled, via the source
term, to the inhomogeneous wave equation in a self-con-
sistent manner. With the two-plate transmission-line and
sheet-beam model, Zhurakhovskiy and Rapoport [20], [21],
and later Sprangle [22], derived a set of equations to
analyze the nonlinear evolution in the gyrotron devices.
Fliflet er al. [23] used the method in [20] and [21] to carry
out the formulation of the numerical nonlinear analysis
with a more realistic circular waveguide and annular beam
model. For nonlinear analyses, usually we integrate that
set of the derived equations numerically. While nonlinear
theory offers more information on the beam-field interac-
tion behavior, which is especially necessary for the high-
power gyrotron devices, the linear theory offers the basic
physics of gyrotrons. Equation (22) is a secondary dif-
ferential equation for one electron. If we solve this set of
differential equations numerically and consider M elec-
trons projected on the gyration circle in a unit length of
the waveguide, we have to solve a system of order 5M. But,
if we assume that there is no reflection at the output end of
the waveguide, the order of this system will be reduced to
SM —3. For an unbunched “cold” electron beam, the
initial values are the transverse velocity, the axial velocity,
the initial phase angle, and the initial values of F(0),
F’(0). If the initial phases are assumed to be uniformly
distributed, we can specify Ay, =2im/M for the ith elec-
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tron (i=1,2,---, M). By computing y as a function of
time, consequently as a function of z, and taking the
average over phases and ensemble, the energy transfer
efficiency from the electrons to the waveguide fields can be
obtained, and the saturation process will be determined.

Leaving this ambitious task here, in what follows we
derive the linear dispersion equation for gyrotrons by the
iteration method.

If all the waveguide RF-field components are neglected,
then we obtain the lowest order solution which corre-
sponds to. the motion of the electron in a uniform static
magnetic field By, v,=v,, v, =0, A=(w/s—Q)T,
Y =7, from (22) we have F(z) = e /*:*. Here, the forward
propagating wave is considered only because we assume
that there is no reflecting wave at the output end of the
waveguide, and k, =[(w/c)? — k?]*/2

Substituting the zeroth order solution into the nonlinear
equations and integrating over ¢, for a single harmonic
number s, we obtain the solutions of the first-order ap-
proximation as
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Making use of s{,,=w al cyclotron resonance and the
above first-order approximations, considering that the sec-
ond-order quantities are much smaller than the first-order
quantities, and using the approximation ¥ ~Q,, siny =1,
cosn =1 for small angle 7, we may write

sin(wt —s¥ —k,z+m0O)

€l,q

w2
= sm(Q t+m®) (C——kzz)m

o (D4 mO) Y S AT (kR)I(kr)

n=0m=—oc
e(w - k:Uz - kotO)
2meygk 0,08,

-cos?(Q,t + m®)

X X Ay, (kR)I(kr). (29)

n=0m=—occ
o e(w—k.uy,) i i (k) In the above equations, €, = w — 5@,y — k.¢0.0-
%= Yo 2meyk R, [T, o Substituting the above first-order approximation of v,,
, v, and (29) into (13) and keeping the second-order ap-
J{ (kor;) sin (wt = S‘I' —k.z+m8) (24) proximation terms only, we obtain
ldy ewyy 22 * e’w w? v
A k.R)J/(k Qi+mO)— ———— | 5 - k2| =
v. dr 2mc? .ok, ,,z_:() = L "« Z s )Ji (ko) sin ") Am*v.c*k v ( c? ) ;
R w—k.v.
cos?(2,1 +mB) 3 Z [A,,m}“[Jm_s(ch)J;(km)]2— lo= k)
n=0m= Qs
(w—kyv,—ko
i (2,14 m0) 3 Z A P (keR) S Cher) o+ Lo h) o004 me
1244 Q s
n=0m= s
0 o0 2
: Z Z [Anm] Jrr%——s(ch)Jsl(kcr/)‘]s(kcr[)}' (30)
n=0m=—o00
ewvy, The first term in the large braces in (30) is proportional to
Y=Y 5k Z Z AT (K R) v%. There are two parts in this term. If k. =0, then this
Hem=0m=-co term is entirely due to the transverse force by the trans-
JJ(k.r)cos(wt —s¥ — k,z +m®) (25)  verse field components and derives from the electron
evtOk cyclotron maser instability. The other part, which is pro-
U, =V +F 2ok . Z Z Ayt (kR) portional to k2, is due to the force in the z direction, that
YR s n=0m=-o0 is, due to the Weible instability. This Weible part causes a
-J/(k.r)sin(wt— sV —k,z+m®) (26) change of the phase velocity of the electron motion. This
ev. can be made clear by observing (26). If k, =0 or v,, =0,
Z=10,4T — —to—z Z Z A,.J._(k.R) then v, =v,, and the Weibel instability would disappear.
2meyok &5 2o ms w0 Thus, a conclusion we can make is that the existence of the
J2( kcr,)cos(wt — sV —k,z+m®) (27) Weibel instability is always associated with the electron
Q w o transverse motion and with the propagating RF wave in
A=Qt— _ew_;)vto_Z > Y 4,J, . (kR) the waveguide. The electron cyclotron maser part and the
k& Com Weibel part always oppose each other, since their signs are

Tk r)cos(wt —s¥ —k,z+mO)

e(w—kpyy—kvgy) &
- A k.R
2meyok 20,62, ,,;0 m ; w In=sl )

I, (kr)cos(wt —sY¥ — k,z+m®).

(28)

different from each other. When «? > ¢?k2, the cyclotron
resonance instability dominates; otherwise, the Weibel in-
stability dominates. When k, # 0, there is a frequency shift
that causes the amplification or oscillation frequency to
shift away from sQ . We have seen that the energy change
of the electrons is completely due to the interaction be-
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tween the transverse field and the velocity for TE mode
interaction. The second term in the big braces is due to the
change of the transverse velocity and is proportional to the
inverse of Q; while the third term, which is also inversely
proportional to €, is associated with the change of the
gyration phase velocity. These two terms set a threshold
for the instability. The right-hand side of (6) may be
written in the form

ck? I,

Ll

o312
Jme kZl,
ewF(z) -/ - (31)

Substituting (30) into (31) and taking the average over a
period of a slow time variable ;¢ and m®, from (22) we
obtain the dispersion equation as

[dav x J-e,(B)* = )v E*
A

1dy

wkU°°

R D Y VI

s n=0m=-oc0

[oe]

D

$ O0m=—o0

W= kzvz - kotO o
Z

where B8,=1v, /c.
From (32), the dispersion equation can be derived in the
form

2

w——k2 k2

C

_emly [ BAHe?—kZ?)  (0—kp,)

—chzyovzol Q2 H= Q, o) G3)

where

H=Y Y (4,0 (kR)J(kr)]> (39

n=0m=—-o0

o-n-[1- 2| £ £ L Pa )

.Js’(kcrl)‘]s(kcrl)' (35)

In the circular waveguide case, for the TE,,, mode, k =
Dom/ @, Where a is the radius of the waveguide and p,,, is
the mth root of the Bessel function J,(x). In the above
dispersion equation, the coefficient 4,,,
there is no summation involved. Comparing this dispersion
equation with that derived by Chu et al. [24], for the
circular waveguide TE,,, mode, we find that the function
H is the same as H,,, in [24]. From the Bessel equation,
the first term in the function Q in (34) can be made the
same as that in [24]. However, there is some difference
between the rest of Q in (35) and the rest in the function
Q,,, in [24]. The difference is due to the different ap-

[An,,,w,ﬁ_s(ch)J;(kcr,ws(kcr,)}

equals unity and
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proximations made in the two different approaches to
derive the dispersion equation. As pointed out in [24], in
the dispersion equation, the term with Q_, involved im-
poses a threshold beam energy for the instability. At
higher harmonics, that term is very small compared to the
term proportional to H and it can be neglected.

IIL.

With the field components written in the forms of (2),
(8), and (9), in Section II from nonlinear theory we derived
an equation for F(z) in (22) which has to be solved
simultaneously with other equations. In this section, we
employ plasma kinetic theory to solve this equation to
get F(z); moreover, we shall obtain the small-signal
gain-frequency relation for gyro-TWA’s.

Because of its relative simplicity and the case with which

GYROTRON KINETIC THEORY

3 [4,,)[,,

_(k RYJ (k)]

[T (K R) I (ker))]?

(32)

the physical results obtained can be understood, kinetic
theory has been widely used in gyrotron analysis. As a
standard approach in plasma physics, the linearized Vlasov
equation is solved by the method of characteristics, and
the initial value may be included in introducing a Laplace
transformation. Through the inverse Laplace transforma-
tion, the function F(z) which describes the profile of the
RF field along the waveguide with the presence of moving
electrons is obtained, and this allows the gain of the power
flow of the device to be computed. Park er al. [25] have
used this approach to analyze the slow-wave gyrotron
amplifiers for the circular electrical waveguide modes.
However, the analysis presented in this section is with the
generalized waveguide-beam model shown in Fig. 2(a) and
is for any TE waveguide modes.

As usual, we find just the first-order perturbation of the
electron distribution function. Therefore, this is a linear
theory. In doing this analysis, several assumptions are
made. First, it is assumed that the space-charge effect can
be neglected; second, the electron beam and the RF wave
in the waveguide are described by the linearized Maxwell-
Vlasov equations; third, this is a single-mode analysis, and
coupling with the neighboring wave modes is assumed to
be negligible. The nature of the electron helical motion in
the waveguide makes the cylindrical coordinate system
most suitable for this analysis. But, since this analysis is a
generalized one and is applicable to gyro-TWA devices
with different shapes of the waveguide cross section, this
analysis is carried out in the Cartesian coordinate system
first; then a transformation to cylindrical coordinates is
made naturally by using some Bessel function identities.
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In addition to the Maxwell equations, the Vlasov equa-
tion

af u e 1
—+—yf-—|E+—uxB|v, =0 (36)
at v m cy
and two coupling equations
J=—efdusf (37)
p=-—efd3uf (38)

together form the basic equations of the kinetic theory.
Here, f(u, r, t) is the electron distribution function in
momentum, space, and time; u=y#, v=(1+u?/c*)?,
and 7 stands for the time derivative of ». With assump-
tions |fj| <<|fo| and |By| <|By|, by setting f=/f,+ f,
E=E,, and B = B, + B, the perturbed electron distribu-
tion function can be obtained by the method of character-
istics, viz, by integrating the equation along the unper-
turbed electron trajectory.
With reference to Fig. 2(b), we write u=u,e, +u,e,,
=e,cos® +e,sin®, and u, = (ul +u3)'/. For R, the
guldmg center of electrons, we have

1
VMR = = Q_e®

c

e, sin® — eycos@).

(39)

¢

Furthermore, we may write

afo 8fo dfo
=e —+e—+-—V R
v.fo=e, ou, FPREFT \vl

9,
=e, —O+e

“du

+— sin®@—2
ou, T o SO

56%)

where Q.= eB,/mcy is the electron relativistic gyration
frequency.

The waveguide field components in the beam-field in-
teraction region can be written in the form of (8), (9), and
(12), both the coefficients in the series are dependent upon
the geometry of the waveguide cross section and are de-
rived in [32]. We may write

cos ®

o 1 o )

o 1

sin®@———c

e Ju, Q.

(40)
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Setting ki, =k sinA,, k,, =k cosA,, using the Bessel

identities
o0
e kersin(8+X,) Z Jm(kc,,)ejmwﬂn) (42a)
m=—o0
) . o0
o Jkersin(8+X,) Z (__1)'”Jm(kc,.)ejm(0+>\n) (42b)
m=—o0

and noting the relations from Fig. 2(b) that for electron
orbit at equilibrium ¥/ =¥ - Q (z —z’) /v, and t — ' = (z
—z’)/v,, we obtain the integral of the perturbed distribu-
tion function

e , u
fi= —/ dt’ e " E;+ — X B, |V /o
t—z/v, cy

ejwt Z Z Z A ejm@

n=0m=—00 s=—00
~j(;dz’G(z—z’)Q(z’)

where N, is the electron number per unit axial length, and

T me ck,
(43)

1 ,
G(Z . Z’) — _ej(w~sﬂc)zfz /v, (44)
UZ
u, 0F\ df, u, dF 9f,
= jwF — — — +—_ R
Q(z) [(]wF ¥ Bz)au y dz du, ~s(k.R)
u, OF Q,
-J (k) + ij——a——jS—F J._(k.R)
Y
1 df Jjklu,
J(k rl)ﬂ aR 2_Y F[ m—s— l(k R)
o

(45)

The Laplace transformation F(K) of function F(z) is
defined as

ok RO k) g o

F(K) =f0°°1:(z)e—ﬂ<2dz (46)

where the imaginary part of K is chosen to be positive and
large enough in magnitude so that the convergence of the
integral is guaranteed.

Following the standard procedure, we obtain the trans-
formation of G(z) in (44)

(_;(K) - fwdze—J(w—Ku;/rsﬂc)z
0
1
e, (x)
where @ (K)=w— Ku,/v—sQ,. The Laplace transfor-

(47)

" 1 ([10F(z)( of,  df, af, 9 9
E\+—XB, |V fo=—5{|——|um— —u.=—~ |+ joF in®— —cos®— | BY
. RN ckf{[y P (u,auz u_au jw (Z)(?u, (qu)ax cosCD(?y)Blz
1 9 F u 2 IA
__Je e T\ po 0
+ ) ()Q IR (cos@ x+sm® y)Bl”'+ o 8RBI"} (41)
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mation of Q(z) in (45) is given by

O(K)=04(K)+Q,(K) (48)
where
_ - fo  Ku, 3 o
K)=j = ’
0.(K) jF(K){[(w )au | RV )+ 0K (R RO LK) g
1 k2u, o
+5 [ m—s— 1(k R)+Jm s+1(k R)] (k rl)sz aR} (49)
afy u, 9f, In the last step in writing (55), integration by parts has
0,(K) = F(@{(?ﬁ - ?tﬁ(l)Jm*s(ch)']S,(kcr/) been used. Then, from (53), we have
t z

u
J(K)=—e|d’ue’*—f(K
L (kR IR, r,)Q Z];’} (50) (K) = —efdue y 0
Y ®  ®  ® Nl

R ejwt Z Z Z € ”mefjne

Making use of the convolution theorem, the Laplace trans- YO M s e MCK,
formation of the perturbed electron distribution function 5
. . uy
is obtained as -/du,dul dterYe L G(K)O(K) (56a)
0 00 00 e N _ Y

AK)=eY ¥ % eVG(K)Q(K)

n=0m=—oo 5=~ Mk J(T(K)=—efd3ue‘15-—fl(K)

(51) Y

where G(K) and Q(K) are given by (47) and (48), respec- = _ let i i f Ned,, om0
tively. In the following, we derive the perturbed current O M o sm oo MCk,

density in the waveguide. With this formalism of analyses, 5
the axial component of the perturbed current does not . / du, du, dg e’ ¥e~ Y G(K)D(K) (56b)
contribute to the gyrotron interaction for TE wave modes, e Y
so it will be ignored.

The Laplace transformation of the perturbed current
density is defined as

where Q(K) is given by (48).
To evaluate J,(K) and J(K), the electron distribution
function has to be specified. In order for the distribution

J(K)=J,(K)ey+ J.(K)e,. (52) function to be general, we write it in the following form:
Introducing the two quantities folu, u,, R) = f(u2,u®, R®) f.(u,,u,, R) (57)
JAK)=J(K)+ j,(K) (53a) Sl ul, R%) = f,(u2, u?) fr(R°). (58)
JHK)=J(K )= jiI(K) (53b)  Furthermore, we write
h 1
e have f.= 8(u,—u)8(u, —u®) (59)
- T 27u,
J(K)=—e[d u?effl(K) (54a)
1
_ _ fr= _8(R Ro)
THE) =~ e [dPu=tef,(K), (54b) 27R
: Y
8(¢&+ A 60
We obtain the Laplace transformation of (6) as 2vrrr sin £ Termsng DE &) —8(E+ &) A(r) (60)
w? 5 _ d
k2= K2|F(K) JKF(0)~ - F(0)
0 ko 47TAnm 2,,,
B8 T [ [ S 0] ) ()
i sl 4'77Anm Do R, _ _
=-¥r X do [“dricr[J(K)J, (k)= THK ) (k)] (55)
n=0m=—o0 Ne 0 0
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where
r_<r<r,
s otherwise

r,=u,/Q, is the electron Larmor radius in the applied
magnetic field, and f, is an arbitrary function of u,, u,,
and R. The Dirac delta distribution function f, represents
the “cold” beam with infinitely thin guiding center distri-
bution and is normalized to be an electron per unit length.
For “cold” electron beam distribution function, f,= f..
After performing the integrals, we obtain J(K) as

2
Ne'A,,
2
o 2mmcik u,

[u(K) - j@o(K)] (61)

JxK>=ww§¢ D)

m=-—0o0 §= —

where
o [[Bw ot (| Ku) 2,
0,(K) = F(RO)| | T g |- =2 5
: uy
. + + J(k r)¥_
(I) YQS(K)) 2YQL s( crl)
2
uyk
— ¥ 62
+2‘YQS(K)JS(kLr1) +} ( )
Fonl [ X a u, 9 u? F(kr)®
— — e s m— —_— r
QO(K) () Y auz ¥ aut ‘YQS(K) s 'l +
2
usu,
- . 3
2YQCJS(kcr1)\I,_ (6 )

J:?”(K) is given by replacing ¥ _,¥,, @, with ¥, _, ¥_,,
®_ in the expression of J.(K) correspondingly. In the
above

O, =evm¥ J,_(k.R)cos[(m—s)¥ +&]

wrrrf sin &

(64)

= o Jm¥
V_=e >
arr/sin §

' { - kcrl']m—s(ch)COS [(m - S)\I, + 5]

— —;—kcr,Jm_Hz(ch)cos [(m—s5s+2)T +¢]
iy R)cos [(m— s ~2)¥ + ]
+(m—=s+1)J,_,,1(k.R)cos[(m—s5+1)¥ +¢]
+(m—-s+1)J, . (k.R)cos[(m—s—1)¥+ 5]}

(65)

— ,—ym¥
¥, =e
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arrfsin §

1
-{Ekcr,Jm_Hz(ch)cos [(m—s+2)¥ +¢]

- —12—kcr,Jm.s_2(ch)cos [(m—s—-2)¥+¢]

—(m—s+1)J,_, 1 (kR)cos[(m—s+1)¥ +¢]

+(m—s+1)J,_._(k.R)cos[(m—s—1)¥ + 5]}
(66)

1

— —m¥
V. =e —s
wrr sin §

(ke (k R)cos [(m=s)¥ =]
1
- Ekcrl']m—s+2(kc‘R)cos [(m - +2)\I, - 5]

— ksl R)cos[(m— 5 ~2)¥ +¢]

+(m=s5=1),_,_,(k.R)cos [(m — s~ 1)¥  ¢]

#(m =5 =1)d, (K R)cos[(m =5 + 1% = ]
(67)

1

V= e——jm‘I’
. :
¢ mrrf sin §

1
Gk sialkR)cos[(m =5 +2) ~¢]

- %kc"l-]m—rz(ch)COS [(m—s-2)¥-¢]
+(m—s-1)J,_,_(k.R)cos[(m—s—1)¥ —£]
~(m—s-1)J,_,. (k. R)cos[(m—s+1)¥ — S]}

(68)

Now we shall work out the integral over the waveguide
cross section on the right-hand side of (55). In cylindrical
coordinates, the integral is over r and 8. Making use of the
relation dr = r;sin £ d'¥, we may convert the integral over r
into an integral over V. After evaluating the integral over
¥ and @, we get

2 2
e“N, w4,

mc? Nk u,

©
=2
n=0m

[ F(K)T(K) - jFO) T, (K )] (69)
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where
[ Ku, 0 Ku,\ 0 u? u? 3
T(K)= +lw- — || Ik ¥ +-———-—————————-
1(K) |y 0w, (“’ Y )au,H (k) o %y sz(K) " sz"(k”) 2709 (K)
T,(K R J(k “ g T (ko) ¥
0( )_ _Y auz— ¥ aut ( rl) ﬂ (K) 290 S( crl) -
and
&, =k J2_(kR)J (k1)
R 2k}

s+1
\I,-—= k r { Jr3~s(ch)Js,(kcrI)+[(m S) +1(k rl)+ k r s+1(kcr1):|Jm—(s+1)(ch)

'l 'l

s—1
+ {(m_s)‘ls/—l(kcrl)+ _]:T‘]s—l(kcrl)]‘]m—(s—l)(ch)
c’'l
1
- 2kcrl‘ls,+2(kcr1) (s+2)(k R)~- K o (k) I} (s—2)(ch)

R 2k s+1 '
v, = (m=s)J (ko) +—— < Jor1(ker) | e sy (K R)
el

(s=1),

¢l

—Fm—SNL&km%+ _AkmﬂlwuqﬂhR)

1 1
- Ekcrl‘]s’+2(kcrl)Jrrzl—(s+2)(ch) + Ekcrl‘]s/—Z(kcrl)Jri-(s—Z)(ch)} .

Finally, we obtain F(K) in a quotient form

_ N(K)
F(K)=—7—
where

T P el LIS ED Y e WS

n=0m=—o00 s=—00 YN

A2
_____"_’_"_DOO(K)

N(K) = jF(0)| K - ~

¥ ¥ ¥

Om=-0s =]
where » = N,e?/mc? is the Budker parameter and

Dl = k7= 5 L k) o (kRO

2

S a
- kcrlﬂs(K){ZQC(l_ kz_rl2) Js(kcrl)‘]n%—s(ch I\I,+ Js/(kcr/)

2

k
—nz(m[zvkcr,( ,f“)f(kr,) e R) == |, (k)
et

Dy(K) = Qzu(K) { [J (k) s(ch)]2

N 2k ru,

s-zs(1{)Js(kcrl)J.s‘,(kcrl)szAs

WK(K)L(kﬁ)@_}-

J(ko)¥.
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(70)

(1)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)



1054

Similar to the commonly used beam-field coupling coef-
ficient, for a single gyration harmonic number s, we define
a beam—field coupling coefficient

H=Y % (Au) 10k

n=-—00 m=—00

(kR

In the simple circular waveguide case, (80) reduces to
the common form

H,=[J/ (k) (kR)]? (81)

used in many papers [24], [27], [28]. A good physical
explanation of the beam—field coupling coefficient can be
found in [28].

In the expression of D, in (78) the first term, which is
proportional to H,, is the source term; the second and the
third terms impose a threshold on the instability. From
this analytical result, if H, vanishes, clearly both the
cyclotron maser instability and the Weibel instability will
vanish.

Because |Jy(x)| <1, |/, (x)] <1/v2, we many conclude
that for the same beam energy, the same waveguide struc-
ture, the same wave mode, and the same frequency range,
a concentric beam has a bigger coupling with the fields
than an annular beam. This offers a simple explanation for
the utilization of rotating electron layers instead of annular
beams in most of the reported microwave generation ex-
periments at higher harmonics of gyration frequency. In
the case of a concentric electron beam, R =0, H_ + 0 only
if m=s. Therefore, for a single harmonic number s, the
beam-—field coupling coefficient becomes

He= Y (4]

n= —00

(80)

(82)

For a concentric beam, this means that if a gyrotron device
operates at the sth gyration harmonic, the electron beam
can have efficient interaction only with the field multipole
of order 2s. For other beam models, this statement is also
valid if the field is expanded into the multipoles around
the guiding centers of the gyrating electrons.

Since near the cyclotron resonance Q.=w —kp,/s,
k.,=w/csiny, r,=vsing/Q, and v,=vsin¢g, we can
write the argument of the Bessel function as [29]

ko= svsin¢ sin (83)
where ¢ is the pitch angle of the electron and  is the
Brillouin angle of the wave mode, which is defined as
an 'y =k, /k..

It is clear that if vsiny sing is very small compared to
¢, the speed of light in free space, i.e., if the electron beam
is nonrelativistic or moves with a small pitch angle or both,
then the Bessel function has an argument much smaller

o

C—DCOSPHCOS Y

JiU,

Djy(K) = (kR

[J/ (k) ],

Bx
C

B k.u
k2r J(k r[) m— S(kLR)— 2

2
) [2ykcr, (l pER:
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than its order s. This is because the higher the order of the
Bessel function, the bigger the argument it needs to reach
the first peak of the function value; in addition, the peak
value of the Bessel function becomes smaller when its
order increases. Therefore, when the harmonic number s
increases, the coupling between the field and the electron
beam becomes weaker. It is crucial to have a bigger
Larmor radius for higher harmonic operation. This ex-
plains why, in general, the gyrotrons operating at higher
gyration harmonics demand high electron beam energy
and big a =u,/u, to have a larger portion of the electron
kinetic energy in the transverse direction.

The waveguide structure is also critical for gyrotrons
working efficiently at higher harmonics of the electron
gyrofrequency because a good waveguide structure can
achieve a much bigger component of the desired multipole
field at the order of the harmonic number and, conse-
quently, a much bigger beam-field coupling.

The inverse transformation of F(K) gives function F(z),
which is the function of frequency, the electron beam
parameters, and the waveguide parameter.

The Laplace inverse transformation is defined as

F(z) = [ akeSF(K)

—JC—

(84)

where the contour C must be large enough to include all
the poles of F(K).

The inverse transformation integral may be carried out
by using the residue theorem in complex variable theory,
ie.,

m
F(z)=j Y Res[e/*?F(K,)] (85)
=1
where K, is the ith pole of the integrand. From (75), the
poles of function F(K) are the roots of its denominator
D(K) in (76).

In the “cold” electron beam case, D(K) in (76) is a
quartic function, and it is readily seen that all the singular-
ities in F(K) are order of one. Because F(K) is in the
form of (75), so we can write F(z) in the following form
by the residue theorem:

N(K))

e )_’geﬂ( D(K)

where D’(K) is the derivative of D(K) with respect to K
and is given by

(86)

D'(K) = —2[KQ§(K)+ %QS(K)((:—ZZ— K?- kf”

- ——=Diy(K) (87)

YN
where

2
t A

J/ (k)

c’l

Q

C

)J(kr,) (ch)—k‘ut‘Tg}Js(kcr,). (88)
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At the input plane z =
a relation

0, if F(0) is set to unity, we have

LN (K ) _

89
Therefore, the problem of ob_tammg F(z) is reduced to
finding the poles of function F(K), or the roots in D(K).
Moreover, if the output of the gyro-TWA device is well
matched to the load, the wave propagating in the negative
z direction vanishes, and the corresponding coefficients in
(86) and (89) must be zero.

Once F(z) is determined, all the components of the field
in any cross section in the waveguide can be obtained
through (8) and (9). Since the field components in the
waveguide are assumed to be in the forms in (2), (8), and
(9), and F(z) is given by (85) the power flow in the
waveguide can be obtained by integrating the axial compo-
nent of the Poynting vector over the cross-sectional area of
the waveguide

1
P(z)= —Re/dAez-(E, X B,)
2 A

3F( )

2

-{%LdAV,BB-(V,Bf)*]}.

For a uniform waveguide, the part in the brackets in the
above equation is independent of z. If we denote

=lRe< JF(z)

(%0)

D,=- fdAvBO(VB)

Tk Q)

then we can write the power flow at z

()]

JK,z N(K’) “
‘ D’(K»LZ

P(z)= DRe[

=Dt{£

=1

(92)
If the beam-field interaction length is L, the gain in
decibels is defined as

P(L)

P(0)

G =10log

=10log

(93)

where P(L) is the power flow at the output end of the
waveguide and P(0) is the power flow at the input plane of
the waveguide.

Obviously, the gain is a function of all the beam and
waveguide parameters, and is also a function of the
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frequency. Thus, we can compute the gain as a function of
the frequency with all the specified electron beam and
waveguide parameters.

Due to the fact that the cyclotron maser radiation is
strong only ‘when the frequency is close to the cutoff
frequency of the operating waveguide mode, for gyro-TWA
devices with uniform waveguide, a relatively small band-
width is expected; usually, the 3-dB bandwidth is just 1-3
percent. But, since the beam-field interaction is distrib-
uted along the waveguide, various methods can be used to
alleviate this and a much bigger bandwidth can be achieved.
Y. Y. Lau proposed a tapered instead of a uniform wave-
guide as the beam—field interaction space. Simultaneously,
the applied magnetic field is also tapered to maintain the
synchronization between the beam and the field along the
waveguide. From both theoretical and experimental inves-
tigations, the gyro-TWA device with tapered waveguide
can achieve about a 15-percent bandwidth centered at
35-GHz frequency [27]. Another method to increase the
bandwidth is to decrease the applied magnetic field slightly
below the grazing line, as many investigators have pointed
out and confirmed in experiments {24], [27].

Analyzing the instability through the derivation of a
dispersion equation is a generally used approach in plasma
physics. Here, we can easily obtain a general dispersion
equation from (76) for the gyro-TWA. The third term on
the right-hand side of (78) is proportional to the square of
€.(K) and is much smaller compared to the other two
terms near cyclotron resonance; this makes the neglect of
that term on the right-hand side of (78) permissible. There-
fore, if D(K') in (76) is set to zero and the electron beam
inhomogeneity is neglected, i.e., only the first two terms in
the expression for D,,(K) in (78) are taken, then a gener-
alized dispersion equation for gyro-TWA can be obtained
which is applicable to waveguides with any shape of cross
section.

The zeroth-order solution to (6) may be assumed to be
of the form e’*:* and k, is understood as real, K is
changed into k, and frequency  is assumed to be com-
plex, as the common approach in plasma physics. Since
sQ,=w—k,u,/vy, the generalized dispersion equation
takes the form

w2
— —k2—k?
(C2 z c)

Bt ((0 —k ) (w_sz:O) ,
le o 1T g Q} 49
where
H= Y ¥ [Pl (kR K)] 09)
2= T ¥ (A P{2kadi (kR)

kir}
"};’(kcrl)‘]s”(kcrl)_ 7 \I’+ . (96)
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Fig. 3. (a) Cross section of an out-ridged waveguide: a=0.73 cm,
b=022 cm, a; = 0285 cm, A=k =0.19 cm. (b)~(d) Gain-frequency
relation of gyro-TWA with out-ridged waveguide, TE;, mode: (b)
§=2,a=20,V=30kV, I=5A, By=958kG, L=30cm; (c) s =4,
a=3.0, V=40 kV, I=5 A, By=4.89% kG, L=40 cm; (d) s=68,
a=55 V=40kV, I=5A, B,=3278kG, L=40cm.

Putting the coefficients A,,, to unity and removing the
summations in (95) and (96), we obtain a dispersion equa-
tion suitable for the TE,,, mode of the circular waveguide
if k, is set to p,,/a. Comparing this to the dispersion
equation derived for the TE,,, mode of the circular wave-
guide in [24], we find that H is the same as H_,, in [24]. As
to the function Q' in (96) and Q. in [24], the difference is
between ¥, in Q' and the last two terms in Q. In
Q’, the Bessel functions J,,(k.r), J;,,(k.r) and
s 2 1(KR)s Jp_ (54 2(k R) are also involved. In [30]
and [31], Dohler explained that these may be important for
“periotron” interaction.

IV. , CoMPUTATION OF GAIN-FREQUENCY FUNCTION

To compute the gain—frequency function of a gyro-TWA
with a given axial uniform waveguide structure, we need to
specify all the parameters of the waveguide geometry and
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Fig. 4. Gain~frequency function of gyro-TWA with out-ridged wave-
guide: a =22 cm, b=0.662 cm, a, = 0.857 cm, h = 1" = 0.57 cm, TE,,
mode. (a) s =2, a=2.0,V=30kV, I=5 A, B;=9,58kG, L=30cm;
(b) s=4, a=30,V=40kV, I=5A, B;=4.8% kG, L =40 cm.
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Fig. 5. (a) Cross section of a magnetron-type waveguide: (b)—(d)
Gain—frequency relation: (b) s =2, a=0.187 cm, b= 0.281 cm, N, =2,
I=5A,V=30kV, a=20, §,=60°, k,=10.7, By=9.575kG, L=30
cm; (€) s=4,a=0221cm, b=0335cm, N,=4, =5 A, V=40KkV,
a=30, 6,=40°, k, =107, B,=4.89% kG, L=40 cm; (d) s=6,
a=0228 cm, b=0342 cm, N;=6, I=5 A, V=40 kV, a=20,
0, =30°, k,=10.7, B, =3.276 kG, L =40 cm.
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Fig. 6. (a) Cross section of a rectangular waveguide: ¢ =0.586 cm,
b= 0.6 cm: (b)-(d) Gain-frequency relation: (b) s =2, a=2.0, ¥ =30
kV, I=5 A, By=9.58kG, L=30 cm, TEgy; (c) s=4, a=3.0, V=40
kV, I=5 A, B;=4894 kG, L=40 cm, TE,; (d) s=6, a=5.5,
V=40kV, I=5 A, B,=3278 kG, L =40 cm, TE,. ‘

those of the electron beam; we also need to obtain the
coefficients in the series of the expansion of the axial
magnetic field in the waveguide and the norm of the axial
magnetic field given by (7). Then we can use the results of
the kinetic theory to compute the gain—frequency curves.
The details for calculating the field coefficients and the
norm of the axial magnetic field are given in [32]. Some
computed results of the gain—frequency function of the
gyro-TWA’s with out-ridged, magnetron-type, rectangular,
and circular waveguides are shown in Figs. 3—7 along with
the waveguide and electron beam parameters. For conve-
nience of comparison, we set the same beam parameters
and the same length of interaction for the gyro-TWA’s
with different waveguides. From the plotted results, it is
seen that the gyro-TWA’s with the widely used simple
circular waveguide and rectangular waveguide have high
gain at lower cyclotron harmonics; the gain decreases
rapidly as the harmonic number becomes higher. However,
the gyro-TWA’s with the out-ridged and with the mag-
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Fig. 7. (a) Cross section of a circular waveguide: (b)-(c) Gain—frequency
relation: (b) s=2, a=2.0, V=30kV, I=5 A, B,=9.58 kG, L=30
cm, 1, =0.562 cm, TE,;, mode; (¢) s=4, a=3.0, V=40kV, =5 A,
By =4.89%4 kG, L =40 cm, r, = 0.496 cm, TE,; mode.

netron-type waveguide still have relatively high gain at
higher cyclotron harmonics.

V. CONCLUSIONS

A unified single-mode theory has been developed for
gyro-TWA at cyclotron harmonics, both in the nonlinear
and the linear regimes. The waveguide fields are expanded
into the series of multipoles around the guiding centers.
The theory is applicable to a wide class of waveguide cross
sections and waveguide modes with arbitrary harmonic
numbers and with the generalized electron beam model.
Some common features of the gyro-TWA operating at the
higher harmonics are explored. The general dispersion
equation is derived. Some numerical examples of the
gain—frequency curves for gyro-TWA’s with several differ-
ent waveguide structures are provided for comparison.

ACKNOWLEDGMENT

The authors would like to thank Prof. I. B. Bernstein,
Prof. A. Hezenberg, Prof. R. Jensen, and Prof. K. R. Chu
for stimulating discussions.

REFERENCES

(1] R. Q. Twiss, “Radiation transfer and the possibility of negative
absorption in radio astronomy,” Aust. J. Phys.,vol. 11, pp. 564-579,
Dec. 1958.

{2] A. V. Gaponov, “Addendum,” Izv. Vyssh. Ucheb. Zaved., vol. 2, p.
837, 1959.

[3] J. L. Hirshfield and J. M. Wachtel, “Electron cyclotron maser,”
Phys. Rev. Lett. 38, vol. 12, pp. 533-536, 1964.

[4] J. L. Hirshfield, I. B. Bernstein, and J. M. Wachtel, “Cyclotron
resonance interaction of microwaves with energetic electrons,” IEEE



1058

5]

6]

(7

{8

9
[10]

(13]

(14]

f15]

[16]

17]

[18]

(191

[20]

{21]

f22]

23]

[24]

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 10, OCTOBER 1986

J. Quantum Electron., vol. QE-1, pp. 237-245, 1965.

V. L. Granatstein, M. H. Herdon, P. Sprangle, Y. Carmel, and J. A.
Nation, “Gigawatt microwave emission from an intense relativistic
electron beam,” IEEE Trans. Microwave Theory Tech.,vol. MTT-22,
pp. 1000-1005, 1974.

M. Friedman and M. Herndon, “Emission of coherent microwave
radiation from a relativistic electron beam propagating in a spa-
tially modulated field,” Phys. Fluids, vol. 16, pp. 1982-1995, 1973.
N. I. Zaytsev, T. B. Pankratowa, M. I. Petelin, and V. A. Flyagin,
“Millimeter and submillimeter waveband gyrotrons,” Radio Eng.
Electron. Phys. (USSR), vol. 19, pp. 103-107, May 1974.

V. L. Granatstein, M. E. Read, and L. R. Barnett, Infrared and
Millimeter Waves, vol. 5, K. J. Bution, Ed. New York: Academic
Press, 1982.

A. A. Andronov, V. A. Flyagin, A. V. Gaponov, A. L. Godenberg,
and M. 1. Petelin, Infrared Phys., vol. 18, p. 385, 1978.

H. Jory, S. Evans, J. Moran, J. Shively, D. Stone, and G. Thomas,
“200 kW pulsed and CW gyrotrons at 28 GHz,” in 1980 TEDM
Tech. Dig. 12.1, pp. 304-307.

R. J. Temkin, K. E. Kreischer, W. J. Mulligan, S. MacCabe, and
H. R. Fetterman, Int. J. Infrared and Millimeter Waves, vol. 3, p.
427, 1982.

V. V. Alikaev, G. A. Babrovskii, V. I. Poznyak, K. A. Razumova,
V. V. Sannikov, and A. A. Shmarin, Fiz. Plazmy, vol. 2, pp.
390-395, 1976 (see also, Soviet J. Plasma Phys., vol. 2, pp. 212-215,
1976).

R. S. Symons, H. R. Jory, S. Hegji, and P. Ferguson, “An experi-
mental gyro-TWT,” IEEE Trans. Microwave Theory Tech., pp.
181-184, Mar. 1981.

S. N. Vlasov, G. M. Zhislin, I. M. Orlova, M. L. Petelin, and G. G.
Rogaecheva, “Irregular waveguides as open resonators,” Radiophys.
and Quantum Electron., vol. 121, no. 8, pp. 972-978, Aug. 1969.

Li Qiangfa, “Theoretical analysis of open resonators in the form of
waveguide with slow-varied cross section,” Acta Phys. Sinica, vol.
29, no. 11, Nov. 1980.

Li Qiangfa and Xu Chenghe, “Microwave network theory of open
resonators in the form of waveguide with slowly-varying cross-sec-
tion,” Acta Phys. Swmica, vol. 30, no. 7, July 1981.

Zhou Lezhu, Xu Chenghe, and Gong Zhonglin, “General theory
and design of microwave open resonators,” Int. J. Infrared and
Millimeter Waves, vol. 3, pp. 117-136, 1982.

Q. F. Li and K. R. Chu, “Analysis of open resonators,” Int. J.
Infrared and Millimeter Waves, vol. 3, pp. 705-723, 1982.

I. B. Bernstein, L. K. Divringi, and T. M. Smith, “The theory of
irregular waveguides and open resonators,” Int. J. Infrared and
Millimeter Waves, vol. 4, pp. 57-117, 1983.

V. A. Zhurakhovskiy, “Using an average method to integrate
relativistic nonlinear equations for phase synchronous instruments,”
Radiotekh. Electron., vol. 9, no. 8, pp. 1527-1531, 1964.

G. N. Rapoport, A. K. Nemak, and V. A. Zhurakhovskiy, “Interac-
tion between helical electron beams and strong electromagnetic
fields at cyclotron-frequency hatmonics,” Radiotekh. Electron., vol.
12, no. 4, pp. 633-641, 1967.

P. Sprangle and A. T. Drobot, “The linear and self-consistent
nonlinear theory of the electron cyclotron maser instability,” IEEE
Trans. Microwave Theory Tech., vol. MTT-25, pp. 313-317, June
1977.

A. W. Fliflet, M. E. Read, K. R. Chu, and R. Steeley, “A self-con-
sistent field theory for gyrotron oscillators: Application to a low Q
gyromonotron,” Int. J. Electron., vol. 53, no. 6, pp. 501-521, 1982.
Kwo Ray Chu et al., “Theory of a wide-band distributed gyroiron
traveling amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp.
866—871, 1981.

[25]

[26]

1271

[28]

[29]

{30]
[31]

32]

S. Y. Park, J. M. Baird, and J. L. Hirshfield, “Linear theory of
gyro-slow-wave amplifier for TE.,-modes in a dielectric-loaded
cylindrical waveguide,” Rep. for NRL, Nov. 20, 1981.

Kwo Ray Chu, A. T. Drobot, H. H. Szu, and P. Sprangle, “Theory
and simulation of the gyrotron traveling wave amplifier operating
at cyclotron harmonics,” IEEE Trans. Microwave Theory Tech. vol.
MTT-28, no. 4, pp. 313-317, 1980.

Y. Y. Lau and L. R. Barnett, “Theory of a low magnetic field
gyrotron (Gyromagnetron),” Int. J. Infrared and Millimeter Waves,
vol. 3, pp. 619-644, 1982.

K. R. Chu, “Theory of electron cyclotron maser interaction in a
cavity at the harmonic frequencies,” Phys. Fluids, vol. 21, no. 12,
pp- 2354-2364, Dec. 1978.

V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, M. I. Petelin, and
P. S. Stelkov, “Relativistic gyrotrons and cyclotron autoresonance
masers,” Int. J. Electron., vol. 51, no. 4, pp. 541-567, 1981.

G. Déhler, “Peniotron interaction in gyrotrons: I. Qualitative anal-
ysis,” Int. J. Electron. vol. 56, no. S, pp. 617--627, 1984.

G. Dé&hler, “Peniotron interaction in gyrotrons: II. Quantitative
analysis,” Int. J. Electron., vol. 56, no. 5, pp. 629-640, 1984.

Q. F. Li and J. L. Hirshfield, “Gyrotron traveling wave amplifier
with out-ridged waveguide,” Int. J. Infrared and Millimeter Waves.
vol. 7, pp. 71-98, 1986.

Q. F. Li, photograph and biography not available at the time of publica-

tion.

S. Y. Park, photograph and biography not available at the time of
publication.

J. L.

Hirshfield, photograph and biography not available at the time of

publication.




