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Theory of Gyrotron Traveling-Wave
Amplifiers

Q. F. LI, S. Y. PARK, AND J. L. HIRSHFIELD

Abstruct —A unified single-mode theory is developed for the gyro-

tron traveling-wave mnpfifier (gyro-TWA) at harmonics of electron

gyrofrequency, both in finear and noofinear regimes. The theory is applica-

ble to a wide class of waveguide cross sections and waveguide modes; it can

afso be useful for arbitrary harmonic numbers and with the generalized

electron beam model. The wavegoide fields are expanded into series of

muftipoles about the electron guiding centers. A general dispersion equa-

tion is derived. Some mnnericaf examples of the gain-frequency curves of

gyro-TWA’s with out-ridged, magnetron-type, rectangular and circular

waveguides are computed by employing the resufts of kinetic theory.

I. INTRODUCTION

BECAUSE OF THEIR ABILITY to produce or to

amplify millimeter and submillimeter waves at un-

precedented power levels with high efficiency, gyrotron

devices have been intensively investigated both theoreti-

cally and experimentally in the past two decades. Their

promising applications include plasma heating, new milli-

meter- and submillimeter-wave radar systems, spec-

troscopy, and advanced accelerators.
This new class of microwave devices is based on the

electromagnetic radiation mechanism known as the elec-

tron cyclotron maser instability, which originates from the

electron azimuthal bunching due to the dependence of

electron relativistic gyration frequency on energy.

A gyrotron device has an electron beam traveling within

a waveguide (or one or more cavities) which is immersed in

the applied magnetic field. Since the bean-field interac-

tion takes place in the plane transverse to the direction of

wave propagation, the electrons must have a substantial

part of their kinetic energy in the form of gyration motion

as they move on helical orbits along magnetic field lines.
Fig. 1 illustrates the basic configuration of a gyrotron

traveling-wave amplifier (gyro-TWA).

The electron cyclotron maser mechanism was recognized

first by the astrophysicist R. Q. Twiss [1] in 1958. Shortly

after Twiss’s work, .4. V. Gaponov [2] published a paper to

describe the classical theory of cyclotron maser.
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J. L. Hirshfield and J. M. Wachtel performed the first

experiment that definitely demonstrated the existence of

the electron cyclotron maser mechanism in 1964 [3], [4].

They reported an experiment with a 5-kV electron beam

traveling along an axial magnetic field, and the beam was

injected into a high-Q cylindrical cavity with most of the

kinetic energy transverse to the applied magnetic field.

The early experiments were with small power and low

efficiency, but since 1974 the advances in gyrotron re-

search have come at a rapid pace. The advent of the

intense pulsed relativistic electron beam renewed the inter-

est in the cyclotron maser mechanism as a source of

high-power microwave radiation. Powers of 800 MW at 4

cm [5], 350 MW at 2 cm [6]., and 8 MW at 8 mm [7] have

been generated with gyrotrous. Gyrotrons built by Soviet

scientists have produced 1.25 MW of 45-GHz radiation

with a pulse duration of 1 to 5 ms, 1.1 MW of 1OO-GHZ

radiation with a pulse duration of 100 ps, and 120 kW at

375 GHz with a pulse duration of 0.1 ms [8]. The efficiency

of these gyrotron oscillators operating at the fundamental

harmonic of gyration frequency is about 30-40 percent [9].

Jory and his group did an experiment which generated 200

kW CW at 60 GHz [10]. Ten&in et al. reported 130 kW at

240 GHz with a pulse duration of 0.1 ms [11]. The experi-

ments to heat plasmas in controlled-fusion devises ha~-e

been done effectively [12]. Some new configurations for

gyrotrons have been examined in the experiments. The

gyro-TWA experiments have been performed and the re-

sults have surpassed those of the conventional TWA de-

vices [13].

Hirshfield et al. [4] first employed plasma kinetic theory

to analyze gyrotron interaction, and this approach has

been widely used since. An electron distribution function

(in space and momentum) is specified and the perturbed

distribution function is obtained by integrating the

linearized Vlasov equation along the unperturbed trajecto-

ries of the gyrating electrons. Another method of analyzing

the interaction process is the Lagrangian formulation where

one directly solves the equation of motion of the electrons

in the applied and RF fields. If rigorous relativistic kinet-

ics are required, such as in the high-power and the higher

gyration harmonic gyrotron cases, the integration has to be

accomplished numerically.

In developing gyrotrons at millimeter and submillimeter

wavelengths for plasma heating, radar systems and some

other purposes, there is an increasing necessity to reduce

the weight and size of the devices and, consequently, to
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PUT motion in a self-consistent manner. A dispersion equation

is derived by iterating the solution of that set of equations.

Section III is devoted to kinetic theory. The introduction

of the Laplace transformation allows us to include the

initial values. The small-signal gain–frequency relation is

obtained through the inverse Laplace transformation. As
/u

I examples, the small-signal gain-frequency curves for gyro-
ELECTRON GUN COLLECTOR

TWA’s with several waveguide structures, such as the
Fig. 1. Basic configuration of a gyro-TWA.

out-ridged, rectangular, magnetron-type, and circular

wavegu~ides are computed.

reduce the magnetic field substantially. For the amplifica-

tion or generation of submillimeter waves with gyrotrons,

an impractically high applied magnetic field would be

required if the device is operated at the fundamental

cyclotron harmonic. For a gyrotron operating at the same

frequency range but at the s th harmonic of the electron

gyrofrequency, the applied magnetic field is reduced ap-

proximately by a factor of s. This is of great importance,

especially for uses in compact radar systems and for those

applications where the device size and weight are critical to

the system.

This paper presents a unified theory of gyro-TWA at

harmonics of the electron gyrofrequency. The fields in the

waveguide and, consequently, the forces on the electrons

are expressed by infinite series of multipole components

expanded around the axis of the electron helical trajecto-

ries. This makes the analyses, both linear and nonlinear,

capable of handling several different shapes of waveguide

cross sections for the RF structures of gyro-TWA devices.

The waveguide structure is very important for the oper-

ation of gyrotrons at higher harmonics of electron

gyrofrequency. A good waveguide structure creates a suit-

able field pattern in the waveguide to enhance the beam–

field interaction substantially at the operating gyration

harmonic.

It has been realized in general that the RF-field trans-

verse inhomogeneity in the waveguide is responsible for

the interaction between the electron beam and the field in

gyrotron devices at the harmonics of the electron gyration

frequency [7]. In the present work, the analytical results

show that the electron beam interaction with the field at

the s th harmonic is associated with the multipole field of

order 2s only if the field is expanded around the guiding

centers of electrons. In order to achieve a good coupling

between the waveguide field and electrons, a larger beam

energy is required for gyrotrons working at higher gyration

harmonics. However, unlike previous theoretical predict-

ions, in this work it is shown that a higher order waveguide

mode is not necessarily better for a gyrotron device to

work at higher harmonics than a lower order mode, even

though the higher waveguide mode has a higher transverse

inhomogeneity in the RF field.
Starting with the Maxwell equations and the equation of

motion of an electron, employing the weakly irregular

waveguide theory, and expanding the waveguide field into

an infinite series of the multiples around the gyration

centers of the electrons, we derive a set of equations in

Section II to describe the nonlinear evolution of electron

II. NONLINEAR THEORY

In this section, we formulate a set of basic equations for

gyrotron nonlinear theory. Starting with the Maxwell

equations and the equation of motion of an electron in the

electromagnetic field, we derive a set of nonlinear equa-

tions which can be applied to the gyrotrons with different

waveguides. A general dispersion equation of gyro-TWA is

derived from that set of nonlinear equations with an

iteration method.

In the analysis, all the RF fields are assumed to be time

harmonic. From the Maxwell equations, an inhomoge-

neous Helmholtz equation for the magnetic field can be

derivecl as

(J2 4T
V2B+2B=– TVXJ (1)

where o is the angular frequency, c is the speed of light,

and J is the current density.

For TE waveguide modes, E:= O, where z is along the

axial direction of the waveguide. With the assumption

ld/dz in Bzl <<1, we may write the axial component of the
magnetic field in the following form:

BZ = F(z) Bj(rt)e~”” (2)

where q represents the transverse coordinates and F’(z) is,

in general, a complex function of z. In the gyrotron

analyses, Id/dz in B: I <<1 is a good approximation since

the beam–wave interaction is strong only in a frequency

range that is close to the cutoff frequency of the operation

wave mode, where the waveguide wavelength is long com-

pared to the scale length of the beam–wave interaction.

If operator v is written as v = v, + e=il/dz, then v 2 =

v: + d 2/d~, and from (2) the equation for BZ takes the

form

—— -~(v XJ)”ez. (3)

A parameter kC has been introduced in the above and it

will be determined later. Since B= is assumed to be in the

form of (2) and the space charge effects will be neglected,

the eigenvalues and the associated eigenfunctions of the
waveguide for TE modes can be obtained by solving the

equation

(v:+k~)Bj=O (4)
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subject to the perfect conducting boundary condition on I 1 Y! ~
the wall of the ‘waveguide -

n .V, B20 = O

where n is a unit vector normal to

surface.

From (3), for function F(z), we

equation:

-, ‘5) p) ,Wx
the wavegulde wall

have the following
(a) (b)

FIg 2. (a) Electron beam- waveg,ulde model (b) Prolectlon of an elec-

JN= B:(B:)*LL4
A

(7)

( BO) * is the complex conjugate of B:, and the integration

is ~ver the cross section of the waveguide.

The transverse components of the electric and magnetic

field for TE waveguide modes can be derived from the

Maxwell equations as

1 (3F(z)
B,=—— vtB.OeJu’

k: d, “
(8)

(9)

In this formalism, the problem of determining the fields

in the waveguide with moving electrons reduces to (4),

which is the same equation as that for the empty wave-

guide, and to (6), which involves the electron beam and the
fields in the waveguide. But for (6), we can have several

different ways to obtain its right-hand side. In this work,

two different approaches to obtain the right-hand side of

(6) will be employed.

It should be pointed out that if the right-hand side of (6)

is set to zero but kC is assumed to be a function of z, then

under single-mode assumption, (6) can be the basic equa-

tion for slow-varying waveguides used in gyrotrons

[14] -[19].

The assumptions made in this nonlinear analysis include

a single-wave mode, the neglect of space-charge effects,

and an initially monoenergetic electron beam. In the tenu-

ous beam case, the single waveguide mode is a very good

description and has been confirmed by experiments [7],

[10]. The beam and waveguide model is depicted in Fig.
2(a). In this model, the beam can be either annular or

concentric. Moreover, since the shape of the waveguide

cross section is not restricted to being circular or rectangu-

lar, it can be applicable to several different shapes. In the

analyses, no assumption about beam energy is made;

tron trajectory on the &oss section of a wav}gulde,

are

dP

(

1

dt =
–e E+ —vx B

1
(lo)

c

dy
mcz —=–ev. E

dt
(11)

where y = (1 – u2\c2)- 1/2.

For TE modes, the fields in the waveguide can be

expressed as B = (B. + Bz]e: + B.tet + Bye Y, E = EXey +

Eye,, and Bee, is the applied magnetic field. From the

equation for y in (11), it is seen that the energy exchange

of the electrons for the TE waveguide modes is entirely

from the interaction of electron transverse velocity with

waveguide transverse electric field.

In general, we can expand the waveguide field into the

infinite series in the following equation [32] in cylindrical

coordinates:

n=om =-m

The coefficients Anm in the series are dependent upon

the shape of the waveguide cross section, Jn,( x ) is the

first-kind Bessel function of order m, and r =

(X2 + y2)1f2. Setting u = u, + j+, we have v,= 1/2( r +

U*), Uv= – j/2( u – u*), wlhere u* is the complex con-

jugate of U. Furthermore, if the solution of u is assumed to

be in the form u = v,eJA, Ur = (VU* )1/2. and the phase angle

A = tan-l(o, /oY)= –tan-l[j(u– u*)/0+ u*].

Following the approach of [20], we can have

d eut
—“== —
dt 2mcykC ()

:+j: F(z)
~

therefore, the results are valid even in the fully relativistic
. ...,

do d
electron beam case. In the following, the field components u—lny+g
in the waveguide are expanded into the series of Bessel %=– dt my

functions. The coefficients in the expansions are depen-

dent upon the waveguide structure.

Since the momentum P = ymv, for the electrons in the

electromagnetic field, the relativistic equations of motion In Cartesian coordinates,

./

(~.+jEy)+E(&+j~y)
c I

jeB~
— —u - jflCu. (15)

mcy

by equating the real and the
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ima~nary part on both sides of (15) correspondingly, we

obtain the following two equations:

‘=-uf:’n’+;[(Ex-: ~y)cos(A)

‘(EJ’+:BJsin(Ai
d e 8

.— ut-#lly + —
mcyk~ (i “’-VZZZ

[ 1

sF(z) sin(A) ~–cos(A)z BzOe~o’

*=-%[(~.-Win@:

‘(Ey+:BJc0s(Ai+3+Q

e a
=—

m yck ~vl ()“’-u’%

[

d

1
-F’(z) cos(A)~+sin(A)— B$e~of

ay

eB,O
+— F(z)e~u’ + QC

mcy

where !ilC = eBo /mcy.

(16)

(17)

With reference to Fig. 2(b), making use of Graf’s ad-

dition theorem, we have

A=– e
2mcyk~v, [ 1

ju– uz~ –kCv, F(z)

mm w

(18)

(19)

where A and fit denote the time derivatives of A and Vt,

respectively.

However, the function F(z) involved in the above equa-

tions is still to be solved. We write the current density as

J=–~v (20)
u= o

where 10 is the dc current. Making use of (8) and (9), the

integral of the right-hand side of (6) can be cast into

~dAw XY. eZ(B~)* =~dAIV. (.IX(B~)*ez)

+V X[(B~)*ez]+V X( B:ez). J]

jck ~Io
—_.

/
dAv. E*. (21)

@uzoF’(z) A

It is seen from (21) that the axial component of the

current does not contribute to the above integration and

this integral is just proportional to the electron beam

energy change rate averaged over the waveguide cross

section. If the electron beam is idealized as having a single

guiding center R, if the beam energy in most cases is not

too high, and if k: is small, we may approximate U, = U,o,

and 1(1/u,. as the linear charge density in the waveguide.

From (6) and (21), we can have the following equation:

(6’2 (J= )—+ Z–k: F(z)– S=()
6’22

(22)

where

In the above equations, the Larmor radius r~= tl,/ !ilC.

Therefore, we obtained a set of coupled nonlinear differen-

tial actuations from (14), (18), (19), and (22). This set of

equations describes the nonlinear evolution of electrons in

the gyro-TWA devices. Essentially, this set of equations is

a set of the particle orbit equations coupled, via the source

term, to the inhomogeneous wave equation in a self-con-

sistent manner. With the two-plate transmission-line and

sheet-beam model, Zhurakhovskiy and Rapoport [20], [21],
and later Sprangle [22], derived a set of equations to

analyze the nonlinear evolution in the gyrotron devices.

Fliflet et al. [23] used the method in [20] and [21] to carry

out the formulation of the numerical nonlinear analysis

with a more realistic circular waveguide and annular beam

model. For nonlinear analyses, usually we integrate that

set of the derived equations numerically. While nonlinear

theory offers more information on the beam–field interac-

tion behavior, which is especially necessary for the lhigh-

power gyrotron devices, the linear theory offers the basic
physics of gyrotrons. Equation (22) is a secondary dif-

ferential equation for one electron. If we solve this set of

differential equations numerically and consider M elec-

trons projected on the gyration circle in a unit length of

the waveguide, we have to solve a system of order 5M. But,

if we assume that there is no reflection at the output end of

the waveguide, the order of this system will be reduced to

5M – 3. For an unbunched “cold” electron beam, the

initial values are the transverse velocity, the axial velocity,

the initial phase angle, and the initial values of F(0),

F ‘(0). If the initial phases are assumed to be uniformly

distributed, we can specify A o, = 2in/M for the i th elec-



1048 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL hfTT-s4, NO 10, OCTOBER 1986

tron (i=l,2,. ... M). By computing y as a function of

time, consequently as a function of z, and taking the

average over phases and ensemble, the energy transfer

efficiency from the electrons to the waveguide fields can be

obtained, and the saturation process will be determined.

Leaving this ambitious task here, in what follows we

derive the linear dispersion equation for gyrotrons by the

iteration method.

If all the waveguide RF-field components are neglected,

then we obtain the lowest order solution which corre-

sponds to the motion of the electron in a uniform static

magnetic field BO, UZ= UtO, u, = Uzo, A = (Q/s – OC)T,

y = yo: from (22) we have F’(z) = e ‘JkS=. Here, the forward

propagating wave is considered only because we assume

that there is no reflecting wave at the output end of the

waveguide, and k, = [(u/c)2 – k~]1j2.

Substituting the zeroth order solution into the nonlinear

equations and integrating over r, for a single harmonic

number s, we obtain the solutions of the first-order ap-

proximation as

.J;(kCrl)sin(cot – s*– k,z + me) (24)

Making use of Sfl,o ==o at cyclotron resonance and the

above first-order approximations, considering that the sec-

ond-order quantities are much smaller than the first-order

quantities, and using the approximation ~ = $3C,sin q = q,

cos q = 1 for small angle q, we may write

sin(ut–sV–k,z+rn@)

.cos2(fl, t+ m@) ~ ~ AmnJm.s(kc~)Js’( kc~,)

e(a – k=vz – kCuco)
—

2mcyokCvlofl,

.cos2(f),t + m~)

In the above equations, !d, = u – sflCo – k:ov:o.

Substituting the above first-order approximation of v,,

v, and (29) into (13) and keeping the second-order ap-

proximation terms only, we obtain

~=om,=—~

“’,vt” f i AnmJm-s(kcR)
‘=yO–2mc kCQ, n.O~. _~

.J~(kCr,)cos(at – s’1 – kzz + m@) (25)

evtok,
v= = u=” + ~ ~ A J_(kCR)

2mcyok$l, .=0 ~=-~
nmms

.J:(kCr~)sin(ut – SW – kzz + m@) (26)

evtOkZ
2 ~ ~ 4mJ.-s(kcR)Z = 0:”7 – ZmcyokcQ, ~ =o m= –W

.J~(kCr,) cos(ut–.s~– kzz + me) (27)

etifl Covto
A=- QCt–

2myoc3kcQ2
? ? AnmJri-s(kcR)

~ ~=om=—w

.J:(kcrl)cos(ut –s* – kzz + m@)

e (U — kzuzo — k.v~o )m—
2mcyok~vto$l~

~ ~ LnJm-s(kcR)

~=o~=—m

.J, (kCrl)cos(@t –sV–k,z+ m@). (28)

1

The first term in the large braces in (30) is proportional to

v~o. There are two parts in this term. If k: = O, then this
term is entirely due to the transverse force by the trans-

verse field components and derives from the electron

cyclotron maser instability. The other part, which is pro-

portional to k~, is due to the force in the z direction, that

is, due to the Weible instability. This Weible part causes a

change of the phase velocity of the electron motion. This

can be made clear by observing (26). If k= = O or V,O= O,

then u, = Uzo and the Weibel instability would disappear.

Thus, a conclusion we can make is that the existence of the

Weibel instability is always associated with the electron

transverse motion and with the propagating RF wave in

the waveguide. The electron cyclotron maser part and the

Weibel part always oppose each other, since their signs are

different from each other. When 02> c2k~, the cyclotron

resonance instability dominates; otherwise, the Weibel in-

stability dominates. When k, # O, there is a frequency shift

that causes the amplification or oscillation frequency to

shift away from s flCo. We have seen that the energy change

of the electrons is completely due to the interaction be-
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tween the transverse field and the velocity for TE mode

interaction. Thesecond term inthebig braces is due to the

change of the transverse velocity and is proportional to the

inverse of (l.; while the third term, which is also inversely

proportional to ~,, is associated with the change of the

gyration phase velocity. These two terms set a threshold

for the instability. The right-hand side of (6) may be

written in the form

Substituting (30) into (31) and taking the average over a

period of a slow time variable L?,tand m@, from (22) we

obtain the dispersion equation as

1049

proxirnations made in the two different approaches to

derive the dispersion equation. As pointed out in [24], in

the dispersion equation, the term with Q~~ involved im-

poses a threshold beam energy for the instability,, At

higher harmonics, that term is very s@l compared to the

term proportional to H and it can be neglected.

III. GYROTRON KINETIC THEORY

With the field components written in the forms of (2),

(8), and (9), in Section II from nonlinear theory we derived

an equation for F(z) in (22) which has to be solved

simultaneously with other equations. In this section, we

employ plasma kinetic theory to solve this equation to

get F(z); moreover, we shall obtain the small-signal

gain-frequency relation for gyro-TWA’s.

Because of its relative simplicity and the case with which

(32)

where ~t = Vt/c.

From (32), the dispersion equation can be derived in the

form

(/.)2

>–k:+
c’

erIO

[

#(ti2-k:c2)H_ (~-k,vzo)
.

Nmc2youzo a: a, 1Q (33)

where

H= ~ ~ [AH~]2[J~_,(kCR) J;(kCr,)]2 (34)
*=om=—w

“J;(kcrl).l,(k.rl). (35)

In the circular waveguide case, for the TE.~ mode, kC =

prim/a, where a is the radius of the waveguide and p.~ is

the m th root of the Bessel function J.(x). In the above

dispersion equation, the coefficient Anw equals unity and

there is no summation involved. Comparing this dispersion

equation with that derived by Chu et al. [24], for the

circular waveguide TE.~ mode, we find that the function

H is the same as H,~ in [24]. From the Bessel equation,

the first term in the function Q in (34) can be made the

same as that in [24]. However, there is some difference

between the rest of Q in (35) and the rest in the function

Q,~ in [24]. The difference is due to the different ap-

the physical results obtained can be understood, kinetic

theory has been widely used in gyrotron analysis. As a

standard approach in plasma physics, the linearized Vlasov

equation is solved by the method of characteristics, and

the initial value may be included in introducing a Laplace

transformation. Through the inverse Laplace transforma-

tion, the function F(z) which describes the profile of the

RF field along the waveguide with the presence of moving

electrons is obtained, and this allows the gain of the power

flow of the device to be computed. Park et al. [25] lhave

used this approach to analyze the slow-wave gyrotron

amplifiers for the circular electrical waveguide modes.

However, the analysis presented in this section is with the

generalized waveguide-beam model shown in Fig. 2(a) and

is for any TE waveguide modes.

As usual, we find just the first-order perturbation of the

electron distribution function. Therefore, this is a linear

theory. In doing this analysis, several assumptions are

made. First, it is assumed that the space-charge effect can

be neglected; second, the electron beam and the RF wave

in the waveguide are described by the linearized Maxwell-

Vlasov equations; third, this is a single-mode analysis, and

coupling with the neighboring wave modes is assumed to

be negligible. The nature of the electron helical motion in

the waveguide makes the cylindrical coordinate system

most suitable for this analysis. But, since this analysis is a

generalized one and is applicable’ to gyro-TWA devices

with different shapes of the waveguide cross section, this

analysis is carried out in the Cartesian coordinate system

first; then a transformation to cylindrical coordinates is

made naturally by using some Bessel function identities.
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In addition to the Maxwell equations, the Vlasov equa- Setting kX1n = kC sin ~~, kY1n = kC cos An, using the Bessel

tion identities

:+:”v++~uxB)”vJ=O‘3’)
~jkrs~(o+a.) = f Jm(kcr)eJ*(6+An) (42a)

~=.~

~–jkcrsin(O+kn) =

and two coupling equations ~ (-l)~Y~(kCr)e~~(’+A~~ (42b)
~.—~

J
J=–e d3u~f

and noting the relations from Fig. 2(b) that for electron
(37) orbit at equilibriumV’ = V --flc(z- Z’)/J=and t - t’ = (z

– z ‘)/u=, we obtain the integral of the perturbed distribu-

/p=–e d3uf (38) tion function
J

together form the basic equations of the kinetic theory. (
f,= ~ ~~z,udt’e-’’dt’ El + ~ x B,) .vufo

Here, f (u, r, t) is the electron distribution function in
eN,

momentum, space, and time; u = y}, y = (1+ u2/c2)l/2, —- —eJut ~ ~ ~ An~eJmO

and # stands for the time derivative of r. With assump- mck. ~=omz=—m~=—m

tions Ifll << Ifol and 11111<<IBOI, by setting f = f. + fl,
E = El, and B = BO + Bl, the perturbed electron distribu- ~’dz’G(z-z’)Q(z’) (43)

0
tion function can be obtained by the method of character-

istics, viz, by integrating the equation along the unper-
where N= is the electron number per unit axial length, and

turbed electron trajectory.

With reference to Fig. 2(b), we write u = utel + uzez,
G(z – Z’) = LeJ(@–’%)z-’u,u, (44)

et = excos~ + ep sin@, and Ut = (u: + u~)li2. For R, the

guiding center of electrons, we have

?

Q(z)= [(j.F-;:)~+;:~]J~_(kCR)

VUR = – ~ee
c

=+(exsin@-eycos@).
c

Furthermore, we may write

dfo afo dfo
‘t7Ufo= e== + ef~ + -—vUR

z , aR

(39)

Of.

(

~fo 1 . afo
—+eX cos Q—

‘e’au= auf ‘~slnox )

(

dfo 1 afo
+eY sin@— —cos@—

au, – ~c aR )
(40)

where i_lC= e130/mcy is the electron relativistic gyration

frequency.

The waveguide field components in the beam–field in-

teraction region can be written in the form of (8), (9), and

(12), both the coefficients in the series are dependent upon

the geometry of the waveguide cross section and are de-

rived in [32]. We may write

( u= aF

)

.J;(kCrl)+ juF– ;% – js~F JL-,(k#)

.2

1 afo + ‘F[J_&R).J,(kCr,)~~ 2Y
c

1 afo
+ J~_~+l (kCR)] J:(kCr[)~ ~ .

c
(45)

The Laplace transformation F(K) of function F(z) is

defined as

F(K) =/”F(z)e-J~zdz (46)
o

where the imaginary part of K is chosen to be positive and

large enough in magnitude so that the convergence of the

integral is guaranteed.

Following the standard procedure, we obtain the trans-

formation of G(z) in (44)

G(K) = ~=dze-J(”-~”,/y-sQc)z
o

1

‘j O,(K)
(47)

where Q,(K) = ~ — Ku=/y — sac. The Laplace transfor-
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of Q(z) in (45) is given by

Q(K) =~l(K)+Qo(K)
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(48)

(( )Q“(K) =F(o) ~~- ~~ ~m.,(~cl?)~;(~c~,)
In the IIast step in writing (55), integration by parts has

y auf y au= been used. Then, from (53), we have

1 afo

}

Z,(K) = – eJd3ue’E~jl(K)
+ ~J;_JkcR)Js(kcr/)~ ~ . (50)

Y c

Making use of the convolution theorem, the Laplace trans-
—— —

e“’” ~ F F ‘~~nme-’n”

formation of the perturbed electron distribution function
~=o~=.ms=—m c

is obtained as
J

. du, duzdte’s*e’f~G( K)~(K) (56a)

i,(~) =e’’’’’n~ow,~w ~=~m ‘~~,me’’”~(~)X~)
<

(51)
~!(K) = –eJd3ue-’g~f1(K)

where G(K) and O(K) are given by (47) and (48), respec-

tively. In the following, we derive the perturbed current
—— —

e’”t i? ? 2 ‘~~n”e-’n”

density in the waveguide. With this formalism of analyses,
~=om=—m$=—m c

the axial component of the perturbed current does not
J

. dutduzdfe’s*e-’g$ ~(K)~(K) (56b)
contribute to the gyrotron interaction for TE wave modes,

so it will be ignored.

The Laplace transformation of the perturbed current
where ~j( K ) is given by (4!).

density is defined as
To evaluate JC(K ) and J:(K), the electron distribution

function has to be specified. In order for the distribution

.7( K)=~(K)eo+~(K)e,.

Introducing the two quantities

~,(zo=~(zo+jqlc)”

~qK)=J(~)-ji(~)

we have

1,(K) = – eJd3u~e’&fl(K)

~t(IC) = – eJd3u~e-’f~’(K).

We obtain the Laplace transformation of (6) as

(

u’

)
~–k~–K2 ~(K)–jKF(0)

(52) function to be gene;al, we write it in the following form:

fo(uztut$~) =fc(u:$ u;, ~o)fs(uz>ut, ~) (57)

(53a) fJ@! ~:! R“) =fu(~:> u:) fR(~O). (58)

(53b) Furthermore, we write

(59)j-u = &(%-@)wz-u3
(54a)

t

f,= *8( R–RO)

(54b)

—
znr~sin~ [8(~-~0)-~(<+<0)] .A(~) (60)

:F(0)

(55)
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where

{
A(r)= j’

r.sr <r+

, otherwise

r+= RO*r,—

r[ = ut/ i2C is the electron Larmor radius in the applied

magnetic field, and ~~ is an arbitrary function of Ut, u=,

and R. The Dirac delta distribution function jC represents

the “cold” beam with infinitely thin guiding center distri-

bution and is normalized to be an electron per unit length.

For “cold” electron beam distribution fu~ction, ~0 = ~..

After performing the integrals, we obtain .JC(K) as

2

L(K) = ej”’ ~ ~ E ~~~c~~~
~=om=—~~=—m

“[QAK):jQO(K)] (61)

where

Q,(K) =~(K)
{[?%+(”-?)%l

“(@”+,~:K)l++Js(kcr’)*-

ufkCr,
.TS’(kCrl)~+

+ 2yfl, (K) }

(62)

[( )

2

Qo(K) ‘F(O) ~~-z~ ‘~ J:(kCrl)@+
y (?U, Y ~u, YQS(K)

U;uz
— 1—J,(kCrl)K . (63)

2yQc

Z?(K) is given by replacing ‘1_, ‘1’.,@. with ‘l., ‘PC+,

@_ in the expression of ~,(K) correspondingly. In the

above

1

(64)

*_=e-Jm* 1

~rr~ sin 1

“(
–kCrlJ~_,(kCR)cos [(m–s)W +&]

1
– ~kCrlJ~_,~2 (kCR)cos [(m-s +2) V+.f’]

—
~k,r/J~-s-2(k.R)cos[(m –s –2)* + t]

+(m–s+l)JM_,+l( kCR)cos [(m–s+l)V +$]

+(m–s+l)JM_,_l( kCR)cos [(m–s–l)V+f]
)

(65)

~+=e-Jt?l* 1
~rr~ sin [

“(
~k,r/J~.,+2(k.~ )cos[(m–s+2)T +&]

–~k.r,J~.,-Y(k,R) cos[(m–s-2)V +&]

-(m-s +l)JM_,+,(kCR)cos [(m-s +l)V+&]

+(m–s+l)J~_$_l( kCR)cos [(m–s–l)V +&’]
)

(66)

1
*C_ = e-Jrn*

~rr,2 sin 6

“(
–kCrlJ~_,(kCR)cos [(m–s)V –&]

—
~k.r/J~-~+~(k#) cos[(m-s+2)~ -&]

—
~k.r~J~-.-2(R)cos[(m(m -S -2)w + f]

+(m–s–l)J~_,__l( kCR)cos[(m –$–l)*–$]

+(wz-s- l) J~_,.l(kCR)cos [(m- s+l)* -&]
}

(67)

1
~C~ = e-Jn@

nrr~ sin [

{
“ ~k.r/J*-~+2(k#) cos[(m-s +2)*-&]

–~kCr,.l~_,_2(kCR) cos[(m-s-2)T -$]

+(m–s–l)J~_,_l( kcR)cos [(m–s–l)T –&]

-(nz-s-l)J~_,+l( kCR)cos[(m-s +l)T- &’]}.

(68)

Now we shall work out the integral over the waveguide

cross section on the right-hand side of (55). In cylindrical

coordinates, the integral is over r and 8. Making use of the
relation dr = r, sin &dV, we may convert the integral over r

into an integral over Y. After evaluating the integral over

* and 8, we get

( )
$–k:– K2 F(K) –jKF(0)– ~F(o)

e 2N, VA 2

= .~o .g~ , .!~ mc2 Nklt,

.[F(K)T,(K)- jF(0)To(K)] (69)
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(70)

[

a d

1

2

TO(K)= ~—–~— J:(kcrl)
Ut

&+–~ J$(kCrl)@_
y au= y aut y~,(K) 2y*!ilc

(71)

and

$+= kCJ~_,(kcR)J;(kCrl) (72)

,k:
+_=—

{ [

S+l

k,r,
1

– J~_,(kcR)J~(kcrl)+ (m –s)J:+l(k,r~)+ ~J,+l(k.r/) Jif,+l)(k.~)

cl

[

s–1
+ (nz-s)J;_l(kCr,)+

1
-#s-&i) Jm-(,-l)(kc~)

cl

– ~k,r/J;+~(k.r~) J~-(.+~)(k.~)– ~K.rlJ;-2(k,r,) Ji-(s-2)(k.~)
1

2k:
i!+=–

([
~ (WZ-s) J:+l(kCr,)+

S+l

1
~Js+I(&d L(s+l)(k%)

c cl

[

(s-1)

1

, - (m -s) J~_l(kCr,)+ ~J~_,(kCrl) J~_(,_,)(kCR)
cl

— )~k,r/J;+2(k.r/) Ji-(.+2)(k.~) + ~k.r~J;-2(~.r~) Ji-(.-2)(k.~) .

Finally, we obtain F(K) in a quotient form

N(K)
F(K)=—

D(K)

where

[
N(K) =jF(0) K-n:Ow=:@ ~=:m%-Dm(K)

1

(73)

(74)

(75)

(76)

(77)

where v = Nee 2/mc2 is the Budker parameter and

() u:
DIO(K) = K2-$ ~[J;(kcr,)j~_,( kCR)]2

-krQs(K)[2Qc(1-$lJ(kr)J:-
[ ( A wJJkrJ– Q:(K) 2ykcr[ 1 – ~ Ji(kcrl)Ji.s(kcR) – (78)

D,,(K)= ;’
{

~[.l:(kCr,)Jw_, (kCR)]2
yfl, (K) y

kCu,
+ WQ,(K)Js(kcr/)J: (kcr/)J:-s(~c~)–~

)
Q~(K)J,(k.rl)~- . (79)

c
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Similar to the commonly used beam–field coupling coef-

ficient, for a single gyration harmonic number s, we define

a beam–field coupling coefficient

HC= ~ : (Anm)2[J:(kcr,) Jm_,(kcR)]2. (80)

In the simple circular waveguide case, (80) reduces to

the common form

used in many papers [24], [27], [28]. A good physical

explanation of the beam–field coupling coefficient can be

found in [28].

In the expression of DIO in (78) the first term, which is

proportional to HC, is the source term; the second and the

third terms impose a threshold on the instability. From

this analytical result, if HC vanishes, clearly both the

cyclotron maser instability and the Weibel instability y will

vanish.

Because \.lO(x)l <1, lJ~(x)ls I/E, we many conclude

that for the same beam energy, the same waveguicle struc-

ture, the same wave mode, and the same frequency range,

a concentric beam has a bigger coupling with the fields

than an annular beam. This offers a simple explanation for

the utilization of rotating electron layers instead of annular

beams in most of the reported microwave generation ex-

periments at higher harmonics of gyration frequency. In

the case of a concentric electron beam, R = O, HC # O only

if m =s. Therefore, for a single harmonic number s, the

beam–field coupling coefficient becomes

(82)

For a concentric beam, this means that if a gyrotron device

operates at the s th gyration harmonic, the electron beam

can have efficient interaction only with the field multipole

of order 2s. For other beam models, this statement is also

valid if the field is expanded into the multiples around

the guiding centers of the gyrating electrons.

Since near the cyclotron resonance flC = u - k,u=/s,

kC = a/csin~, rl = usin~/flC, and u,= usin~, we can

write the argument of the Bessel function as [29]

su sin@ sin+
kCrl = (83)

C–vcos+cos+

where + is the pitch angle of the electron and + is the

Brillouin angle of the wave mode, which is defined as

tan-l+ = kz/kC.

It is clear that if u sin ~ sin $ is very small compared to

c, the speed of light in free space, i.e., if the electron beam

is nonrelativistic or moves with a small pitch angle or both,

then the Bessel function has an argument much smaller

than its order s. This is because the higher the order of the

Bessel function, the bigger the argument it needs to reach

the first peak of the function value; in addition, the peak

value of the Bessel function becomes smaller when its

order increases. Therefore, when the harmonic number s

increases, the coupling between the field and the electron

beam becomes weaker. It is crucial to have a bigger

Larmor radius for higher harmonic operation. This ex-

plains why, in general, the gyrotrons operating at higher

gyration harmonics demand high electron beam energy

and big a = Ur/ u= to have a larger portion of the electron

kinetic energy in the transverse direction.

The waveguide structure is also critical for gyrotrons

working efficiently at higher harmonics of the electron

gyrofrequency because a good waveguide structure can

achieve a much bigger component of the desired multipole

field at the order of the harmonic number and, conse-

quently, a much bigger beam- fie~d coupling.

The inverse transformation of F( K) gives function F(z),

which is the function of frequency, the electron beam

parameters, and the waveguide parameter.

The Laplace inverse transformation is defined as

F(z) = J-’c+%e’w(lc) (84)
‘JC– CC

where the contour C must be large enough to include all

the poles of F(K).

The inverse transformation integral may be carried out

by using the residue theorem in complex variable theory,

i.e.,

F(z) = j ~ Res[eJK2~(Kl)] (85)
1=1

where K, is the i th pole of the integrand. From (75), the

poles of function F(K) are the roots of its denominator

D(K) in (76).

In the “cold” electron beam case, D(K) in (76) is a

quartic function, and it is readily seen that all the singular-

ities in F(K) are order of one. Because F(K) is in the

form of (75), so we can write F(z) in the following form

by the residue theorem:

N(K1)
F(z) =j ~ eJK=-

i=l D’(K, )
(86)

where D‘( K ) is the derivative of D(K) with respect to K

and is given by

[ i
D’(K)=–2 K!J;(K)+% S(K) <– K’–k:

Y c )1

where
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At the input plane z = O, if F(O) is set

a relation

4 IV(K,)

JE —-----=1.
,=1 ~1~1)

to unity, we have

(89)

Therefore, the problem of obtaining F(z) is reduced to

finding the poles of function F(K), or the roots in D(K).

Moreover, if the output of the gyro-TWA device is well

matched to the load, the wave propagating in the negative

z direction vanishes, and the corresponding coefficients in

(86) and (89) must be zero.

Once F(z) is determined, all the components of the field

in any cross section in the waveguide can be obtained

through (8) and (9). Since the field components in the

waveguide are assumed to be in the forms in (2), (8), and

(9), and F(z) is given by (85) the power flow in the
waveguide can be obtained by integrating the axial compo-

nent of the Poynting vector over the cross-sectional area of

the waveguide

F’(z) = ~Re/dAez.(~,XB,)
A

{

dF(z)
= ~Re – jF(z)T

[J
11

Q W7,11:. (v,l?:)” ..—

ck: A
(90)

For a uniform waveguide, the part in the brackets in the

above equation is independent of z. If we denote

(.J

Dt=– —
J2ck: A

LL4vB; .(vB:)* (91)

then we can write the power flow at z

[“ %1
P(z) =D,Re jF(z)

(92)

If the beam–field interaction length is L, the gain in

decibels is defined as

P(L)

G = 10IOg P(o)

=lolog
[

‘g ~,ir,. ‘(K)
,=1 D’(K,)

[

m N(Ki)
z—

i=l D’(KI)

(93)

where P(L) is the power flow at the output end of the

waveguide and P(0) is the power flow at the input plane of

the waveguide.

Obviously, the gain is a function of all the beam and

waveguide parameters, and is also a function of the
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frequency. Thus, we can compute the gain as a function of

the frequency with all the specified electron beam and

waveguide parameters.

Due to the fact that the cyclotron maser radiation is

strong only ~when the frequency is close to the cutoff

frequency of the operating waveguide mode, for gyro-TWA

devices with uniform waveguide, a relatively small band-

width is expected; usually, the 3-dB bandwidth is just 1–3

percent. But, since the beam–field interaction is distrib-

uted along the waveguide, various methods can be used to

alleviate this and a much bigger bandwidth can be achieved.

Y. Y. Lau proposed a tapered instead of a uniform wave-

guide as the beam–field interaction space. Simultaneously,

the aplplied magnetic field is also tapered to maintain the

synchronization between the beam and the field along the

waveguide. From both theoretical and experimental inves-

tigatiolms, the gyro-TWA device with tapered waveguide

can achieve about a 15-percent bandwidth centered at

35-GHz frequency [27]. Another method to increase the

bandwidth is to decrease the applied magnetic field slightly

below the grazing line, as many investigators have pointed

out and confirmed in experiments [24], [27].

Analyzing the instability through the derivation of a

dispersion equation is a generally used approach in plasma

physics. Here, we can easily obtain a general dispersion

equation from (76) for the gyro-TWA. The third term on

the right-hand side of (78) is proportional to the square of

O,(K) and is much smaller compared to the other two

terms near cyclotron resonance; this makes the neglect of

that term on the right-hand side of (78) permissible. There-

fore, if D(K) in (76) is set to zero and the electron beam

inhomogeneity is neglected, i.e., only the first two terms in

the expression for DIO( K ) in (78) are taken, then a gener-

alized dispersion equation for gyro-TWA can be obtained

which is applicable to waveguides with any shape of cross

section.

The zeroth-order solution to (6) may be assumed to be

of the form eJkzz and kx is understood as real, K is

changed into k= and frequency o is assumed to be com-

plex, as the common approach in plasma physics. Since

sflc = u – kzuz /y, the generalized dispersion equation

takes the form

where

H=~ ~ ~nm]2[J~-s(kcR) J;(kcr~)]2 (95)
,J=om=—m

Ca

{
Q’= 2H- ~ ~ [An~]2 2kCr1t~-,(kcR)

,I=om=—m
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a = 0.73 cm,Fig. 3. (a) Cross section of an out-ridged waveguide:

b = 0.22 cm, al= 0.285 cm, h = h’ = 0.19 cm. (b)–(d) Gain-frequency

relation of gyro-TWA with out-ridged waveguide, TE02 mode: (b)
s=2, a=2.0, V=30kV,1=5 A, Bm=9.58kG, L=30 cm;(c) s=4,

LI= 3.0, V=40 kV, 1=5 A, l?O=4.894 kG, J5 =40 cm;”(d) s=6:
IY=5.5, V=40kV, I= 5A, BO=3.278kG, L=40 cm.

Putting the coefficients ~~~ to unity and removing the

summations in (95) and (96), we obtain a dispersion equa-

tion suitable for the TEn~ mode of the circular waveguide

if k, is set to p~~ /a. Comparing this to the dispersion

equation derived for the TE.n mode of the circular wave-
guide in [24], we find that H is the same as H,~ in [24]. As

to the function Q’ in (96) and Q,~ in [24], the difference is

between *, in Q’ and the last two terms in Q$~. In

Q’, the Bessel functions J.+ ,(kCrl), J, ~ ,(kCrl) and

*-(. t ~)(k.R), .J~-(. ~ z)(kCR) are also involved. In [30]J

and [31], Dohler explained that these may be important for

“ periotron” interaction.

IV. , COMPUTATION OF GAIN–FREQUENCY FUNCTION

To compute the gain-frequency function of a gyro-TWA

with a given axial uniform waveguide structure, we need to

specify all the parameters of the waveguide geometry and

25 -
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Fig. 4. Gain– frequency function of gyro-TWA with out-ridged wave-

guide: a = 2.2 cm, b = 0.662 cm, al= 0.857 cm, h = h’ = 0.57 cm, TE62

mode. (a) s = 2, a = 2.0, V= 30 kV, 1= 5 A, BO = 9,58 kG, L = 30 cm;

(b) s=4, a=3.0, V=40kV, 1=5A, f30=4.894kG, L=40cm,
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Fig. 5. (a) Cross section of a magnetron-type waveguide: (b)-(d)
Gain-frequency relation: (b) s =2, a = 0.187 cm, b = 0.281 cm, Nd = 2,
I= 5 A, V= 30 kV, a= 2.0, 00 =60°, kC=10.7, BO = 9.575 kG, L= 30

cm; (c) s = 4, a = 0.221 cm, b = 0.335 cm, Nd = 4, 1= 5 A, V= 40 kV,
a= 3.0, 80= 40°, kc =10.7, BO = 4.896 kG, L =40 cm: (d) s =6,
a = 0.228 cm, b = 0.342 cm, Nd = 6, I= 5 A, V= 40 kV, a= 2.0,
00 = 30°, kc= 10.7, BO = 3.276 kG, L =40 cm.
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Fig. 6. (a) Cross section of a rectangular waveguide: a = 0.586 cm,

b = 0.6 cm: (b)-(d) Gain-frequency relation: (b) s =2, a = 2.0, V= 30
kV, I=5A, Bo=9.58kG, L=30cm, TEo2; (c)s=4, a=3.0, V=40

kv, 1 = 5 A, BO = 4.894 kG, -L= 40 cm, TE02; (d) s =6, a= 5.s,
V=40kV, 1=5 A, BO=3.278 kG, L=40cm, TE02.

those of the electron beam; we also need to obtain the

coefficients in the series of the expansion of the axial

magnetic field in the waveguide and the norm of the axial

magnetic field given by (7). Then we can use the results of

the kinetic theory to compute the gain-frequency curves.

The details for calculating the field coefficiimts and the

norm of the axial magnetic field are given in [32]. Some

computed results of the gain-frequency function of the

gyro-TWA’s with out-ridged, magnetron-type, rectangular,

and circular waveguides are shown in Figs. 3–7 along with

the waveguide and electron beam parameters. For conve-

nience of comparison, we set the same beam parameters

and the same length of interaction for the gyro-TWAs

with different waveguides. From the plotted results, it is

seen that the gyro-TWA’s with the widely used simple

circular waveguide arid rectangular waveguide have high

gain at lower cyclotron harmonics; the gain decreases

rapidly as the harmonic number becomes higher. However,

the gyro-TWA’s with the out-ridged and with the mag~
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Pig. 7. (a) Cross section of a circular waveguide: (b)–(c) Gain-frequency
relation: (b) s = 2, a = 2.0, V= 30 kV, 1=5 A, BO = 9.58 kG, L = 30
cm, rW= 0.562 cm, TE22 mode; (c) s = 4, a = 3.0, V = 40 kV, 1 = 5 A,

BO = 4.894 kG, L =40 cm, rw = 0.496 cm, TE41 mode.

netron-type waveguide still have relatively high gain at

higher cyclotron harmonics.

V. CONCLUSIONS

A unified single-mode theory has been developed for

gyro-TWA at cyclotron harmonics, both in the nonlinear

and the linear regimes. The waveguide fields are expanded

into the series of multiples around the guiding centers.

The theory is applicable to a wide class of waveguide cross

sections and waveguide modes with arbitrary harmonic

numbers and with the generalized electron beam model.

Some common features of the gyro-TWA operating at the

higher harmonics are explored. The general dispersion

equation is derived. Some numerical examples of the

gain-frequency curves for gyro-TWA’s with several differ-

ent waveguide structures afe provided for comparison.
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